PAN AFRICA SOLAR LIMITED (PASL)

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) OF PROPOSED 80 MEGA WATT (MW) PHOTOVOLTAIC POWER PLANT PROJECT AND ASSOCIATED TRANSMISSION IN KANKIA, KATSINA STATE, NIGERIA

(DRAFT REPORT)

SUBMITTED TO

FEDERAL MINISTRY OF ENVIRONMENT, ABUJA, NIGERIA

SEPTEMBER 2015
ENVIRONMENTAL IMPACT ASSESSMENT (EIA)

OF

PROPOSED 80 MW PHOTOVOLTAIC POWER PLANT PROJECT AND ASSOCIATED TRANSMISSION IN KANKIA, KATSINA STATE, NIGERIA

(DRAFT REPORT)

PREPARED BY (ON BEHALF OF PASL)

ENVIRONMENTAL ACCORD NIGERIA LIMITED
13, Alabi Street, off Oguntona Crescent, Gbagada (Phase 1), Lagos
01-212-0676; +234-802-360-9591
info@envaccord.com
http://www.envaccord.com
TABLE OF CONTENTS

Title Page	i
Table of Contents	iii
List of Tables	vi
List of Figures	viii
List of Plates	x
List of Acronyms and Abbreviations	xii
EIA Preparers	xvi
Acknowledgement	xvii
Executive Summary	xviii

CHAPTER ONE: INTRODUCTION

1.1 Background Information | 2
1.2 Project Proponent | 3
1.3 Project Location | 3
1.4 EIA Objectives | 9
1.5 EIA Process | 9
1.6 Legal and Administrative Framework | 13
1.7 PASL’s Health, Safety and Environment (HSE) Policy | 28
1.8 EIA Report Structure | 29

CHAPTER TWO: PROJECT JUSTIFICATION

2.1 Need for the Project | 31
2.2 Project Benefits | 31
2.3 Value of the Project | 32
2.4 Envisaged Sustainability | 32
2.5 Project Alternatives and Development Options | 33

CHAPTER THREE: PROJECT DESCRIPTION

3.1 Introduction | 46
3.2 Project Overview | 46
3.3 Photovoltaic (PV) Module Technology | 51
3.4 Solar Project Components | 54
3.5 Overview of Project Phases and Activities | 65
3.6 Water Use and Management | 68
3.7 Workforce and Job Creation | 71
3.8 Health and Safety | 72
3.9 Site Security | 72
3.10 Associated Wastes Stream | 73
3.11 Project Schedule | 76

CHAPTER FOUR: DESCRIPTION OF THE ENVIRONMENT

4.1 Introduction | 78
4.2 Data Collection | 80
4.3 Overview of Environmental and Social Setting of the Project Area | 83
4.4 Description of Environmental Characteristics of the Project Area
4.5 Socio-economic and Health Conditions of the Study Area
4.6 Stakeholder Engagement

CHAPTER FIVE: ASSOCIATED AND POTENTIAL IMPACTS
5.1 Introduction
5.2 Impact Assessment Overview
5.3 Impact Prediction Methodology
5.4 Identification of Environmental and Socio-economic Aspects and Impacts
5.5 Impacts Discussion
5.6 Risk and Hazard Assessment
5.7 Summary

CHAPTER SIX: MITIGATION MEASURES
6.1 Introduction
6.2 Mitigation Measures Approach
6.3 Mitigation measures for Identified Significant Negative Impacts
6.4 Mitigation Measures for the Identified Project Risks and Hazards
6.5 Enhancement Measures for Identified Positive Impacts

CHAPTER SEVEN: ENVIRONMENTAL MANAGEMENT PLAN
7.1 Introduction
7.2 Objectives of the EMP
7.3 Environmental and Social Management Organization
7.4 Stakeholder Engagement Plan
7.5 Checking and Corrective Action

CHAPTER EIGHT: DECOMMISSIONING AND ABANDONMENT PLAN
8.1 Introduction
8.2 Decommissioning Programme
8.3 Abandonment
8.4 Site Remedial Measures

CHAPTER 9: CONCLUSIONS
9.1 Conclusions

REFERENCES

APPENDICES
Appendix 1: Certificate of Occupancy
Appendix 2: Previous EIA Certificate and Other Approval Documents
Appendix 3: List of ILO Conventions Ratified and Not Ratified By Nigeria
Appendix 4: Land Valuation Report
Appendix 5: Long term Solar Resource Assessment
Appendix 6: Single Line Diagram
Appendix 7: Project Schedule
Appendix 8: Baseline Results
Appendix 9: Geotechnical Survey Report
Appendix 10: Socio-economic Survey Documents
Appendix 11: Stakeholder Engagement Documents
Appendix 12: Stakeholder Engagement Plan
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1:</td>
<td>List of stakeholders consulted during scoping</td>
<td>12</td>
</tr>
<tr>
<td>Table 1.2:</td>
<td>Summary of IFC Performance Standards and their applicability to the proposed Project</td>
<td>23</td>
</tr>
<tr>
<td>Table 2.1:</td>
<td>Comparison between CSP and PV Solar Technology</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.2:</td>
<td>Comparison between Crystalline and Thin film Technologies</td>
<td>38</td>
</tr>
<tr>
<td>Table 3.1:</td>
<td>Project Overview</td>
<td>47</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>Geographical Coordinates of Sampling Locations</td>
<td>81</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>Some of the analytical methods used for field samples Analysis</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>Summary of Monthly Mean Climatic Characteristics of Katsina State</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.4:</td>
<td>Summary of Monthly Wind Direction in Katsina State</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.5:</td>
<td>Descriptive summary of air quality and noise results of the study area</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.6:</td>
<td>Air Quality Standards</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.7:</td>
<td>Noise Exposure Limits for Nigeria</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.8:</td>
<td>World Bank Noise Level Guidelines</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.9:</td>
<td>Summary of Soil texture of the Project Area</td>
<td>99</td>
</tr>
<tr>
<td>Table 4.10:</td>
<td>Descriptive Summary of Some Parameters analysed in the Soil</td>
<td>100</td>
</tr>
<tr>
<td>Table 4.11:</td>
<td>Descriptive summary of the Microbiological Content of Soil Samples from the study area</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.12:</td>
<td>Descriptive summary of physico-chemical results of groundwater samples from the study area</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.13:</td>
<td>Descriptive summary of the Microbiological Content of water samples from the study area</td>
<td>108</td>
</tr>
<tr>
<td>Table 4.14:</td>
<td>Floristic Composition and Habitat Description</td>
<td>116</td>
</tr>
<tr>
<td>Table 4.15:</td>
<td>Distribution of Plant Species across the Sampling Locations</td>
<td>117</td>
</tr>
<tr>
<td>Table 4.16:</td>
<td>IUCN Categorization</td>
<td>121</td>
</tr>
<tr>
<td>Table 4.17:</td>
<td>Species Biodiversity Status in the Study Area</td>
<td>122</td>
</tr>
<tr>
<td>Table 4.18:</td>
<td>Economic Importance of Flora Species Encountered</td>
<td>123</td>
</tr>
<tr>
<td>Table 4.19:</td>
<td>List of Plantations noted in the wider study area of the Project site</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.20:</td>
<td>Inventory of fauna species in the study area and their IUCN Status</td>
<td>132</td>
</tr>
<tr>
<td>Table 4.21:</td>
<td>Existing Land Type/Land cover in the wider Study Area</td>
<td>140</td>
</tr>
<tr>
<td>Table 4.22:</td>
<td>Housing Characteristics of Respondents</td>
<td>159</td>
</tr>
<tr>
<td>Table 4.23:</td>
<td>Summary of the process and stages of consultation</td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1:</td>
<td>Administrative Map of Nigeria highlighting Katsina State</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2:</td>
<td>Administrative Map of Katsina State highlighting Kankia LGA</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Administrative Map of Kankia LGA showing the Project Site</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.4:</td>
<td>Map of the Project site and the nearby existing roads</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.5:</td>
<td>Overview of Nigeria EIA Process</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1:</td>
<td>Map of the preferred Transmission Line Route for the Proposed Project</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.1:</td>
<td>Identified communities within 5 km radius of the Project Site</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.2:</td>
<td>Project site features map</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.3:</td>
<td>Typical appearance of monocrystalline silicon PV arrays</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.4:</td>
<td>Typical Appearance of Polycrystalline Silicon PV Arrays</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.5:</td>
<td>Typical Appearance of Thin-Film CdTe Arrays</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.6:</td>
<td>Solar Farm Technical Overview</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.7:</td>
<td>Proposed Polycrystalline PV Layout</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.8:</td>
<td>Proposed Thin Film PV Layout</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.9:</td>
<td>Row Spacing for Polycrystalline PV</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.10:</td>
<td>Row Spacing for Thin Film PV</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.11:</td>
<td>MV Power Unit</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.1:</td>
<td>Map of the Study Area</td>
<td>79</td>
</tr>
<tr>
<td>Figure 4.2:</td>
<td>Map of existing receptors/resources within 500 m radius of the Project site</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.3:</td>
<td>Mean monthly rainfall for Katsina State</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.4:</td>
<td>Mean monthly minimum and maximum Temperature for Katsina State</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.5:</td>
<td>Monthly Relative Humidity in Katsina State</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.6:</td>
<td>Average Wind Speed in Katsina State</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.7:</td>
<td>Wind rose for the project area</td>
<td>89</td>
</tr>
<tr>
<td>Figure 4.8:</td>
<td>Mean monthly distribution of Sunshine Hours in Katsina State</td>
<td>90</td>
</tr>
<tr>
<td>Figure 4.9:</td>
<td>Air Quality and Noise Sampling Locations</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.10:</td>
<td>Air Quality and Noise Sampling Locations for the entire Study Area</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.11:</td>
<td>Soil sampling locations within the Project site and its Immediate surroundings</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.12:</td>
<td>Soil sampling locations within the entire study area</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.13:</td>
<td>Groundwater sampling locations in the study area</td>
<td>106</td>
</tr>
<tr>
<td>Figure 4.14:</td>
<td>Vegetation Sampling Locations within and around the...</td>
<td></td>
</tr>
</tbody>
</table>
Project Site 110
Figure 4.15: Map of habitat types in the study area 115
Figure 4.16: Map of existing plantations noted in the study area 126
Figure 4.17: Land use Map of the Project Site 139
Figure 4.18: Land use cover of the wider study area 142
Figure 4.19: Population characteristics of Kankia LGA based on Sex 146
Figure 4.20: Age of respondents 152
Figure 4.21: Sex of respondents 153
Figure 4.22: Marital status 153
Figure 4.23: Respondents’ family setting 154
Figure 4.24: Ethnic characteristics of the respondents 154
Figure 4.25: Residential status of the respondents 155
Figure 4.26: Length of residence 155
Figure 4.27: Educational status of respondents 156
Figure 4.28: Occupation of respondents 157
Figure 4.29: Land ownership for primary activities 158
Figure 4.30: Annual household income 158
Figure 4.31: Average monthly income of in-scope households 159
Figure 4.32: Access to education by the respondents 160
Figure 4.33: Source of power used by the respondents 161
Figure 4.34: Sources of cooking fuel used by the respondents 161
Figure 4.35: Responses to Standard of Living 162
Figure 4.36: Respondents’ rate of Project awareness 162
Figure 4.37: Respondents view on Project benefit 163
Figure 4.38: Disease incidence indicated by the respondents 163
Figure 4.39: Respondents’ household health ranking 164
Figure 4.40: Type of health care facilities used by the respondents 164
Figure 4.41: Frequency of visit to healthcare facilities 165
Figure 4.42: Ante-natal care visited by the respondents 165
Figure 5.1: Overview of the Impact Assessment Process 183
Figure 5.2: Impact Magnitude-Receptor Sensitivity Product Results 197
Figure 5.3: Risk Assessment Matrix 219
LIST OF PLATES

<p>| Plate 3.1: | A cross-section of the proposed Project site | 50 |
| Plate 3.2: | An existing untarred road that traverses the Project site | 50 |
| Plate 3.3: | A cross-section of existing Kankia Substation | 64 |
| Plate 3.4: | A typical solid waste container to be used | 75 |
| Plate 3.5: | A typical oil waste container to be used | 76 |
| Plate 4.1: | Air quality measurements in the study area | 93 |
| Plate 4.2: | A cross section of the flood plain area within the Project site | 100 |
| Plate 4.3: | Water use activities in the Project Area | 104 |
| Plate 4.4: | Groundwater sampling activities in the Study Area | 105 |
| Plate 4.5: | Dominant vegetation type found within the Project Site | 112 |
| Plate 4.6: | A; Grazing activities observed within the study area B; grazing land dominated by Combretum micrathum (c) and Cassia obtusifolia (D) communities during wet season survey | 113 |
| Plate 4.7: | Photograph of a farmland in the study area | 114 |
| Plate 4.8: | Wetland Species; A) Paspalum virginatum, B) Nypheae lotus | 114 |
| Plate 4.9: | A; Cassia occidentalis, B; Lawsonia inermis, C; Acacia nilotica, D; Jatropha curcas E; Vitellaria paradoxa | 119 |
| Plate 4.10 | A; Piliostigma reticulatum, B; Pennisetum glaucum, C; Glycine max, D; Borassus aethiopum | 120 |
| Plate 4.11: | (A). Black Ants colony (B). Termite mound’s belonging to Colony of Microteres species | 127 |
| Plate 4.12: | Livestock grazing within the proposed project site (A). Goat Capra species (B) Cattle Bos bos | 128 |
| Plate 4.13: | Fauna species found along the proposed Transmission Line | 128 |
| Plate 4.15: | (A).Waxbill (Estrelidae spp) (B). Rock Pigeon (Columba livia) | 129 |
| Plate 4.16: | (A). Toad Bufo species found in a pond during survey (B). flap-necked chameleon (Chamaeleo dilepis) | 130 |
| Plate 4.17: | (A).Waxbill (Estrelidae spp) (B). Duck (Anser anser) | 130 |
| Plate 4.18: | A cross section of the proposed transmission line route | 137 |
| Plate 4.19: | Questionnaire administration during field survey | 144 |
| Plate 4.20: | Durban Festival Pictures | 147 |
| Plate 4.21: | Sallah Festival Pictures | 147 |
| Plate 4.22: | Activities within Kankia Market at the time of survey | 149 |
| Plate 4.23: | FGD with the farmers group from the five communities |</p>
<table>
<thead>
<tr>
<th>Plate Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 4.24</td>
<td>FGD with the hunters group</td>
<td>167</td>
</tr>
<tr>
<td>Plate 4.25</td>
<td>FGD with the youth group</td>
<td>168</td>
</tr>
<tr>
<td>Plate 4.26</td>
<td>FGD with the adult women group from the five communities within the study area</td>
<td>169</td>
</tr>
<tr>
<td>Plate 4.27</td>
<td>Sample photograph of regulatory authorities present at the scoping workshop</td>
<td>172</td>
</tr>
<tr>
<td>Plate 4.28</td>
<td>Stakeholder Engagement Meeting with Kankia District Head and the village heads</td>
<td>179</td>
</tr>
<tr>
<td>Plate 4.29</td>
<td>EnvAccord Field team, Kankia District Head and Village Heads</td>
<td>180</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS

\(\mu g \) Micro gram
\(\mu g/g \) Micro gram per gram
\(\mu g/m^3 \) Micro gram per meter cube
\(\mu S/cm \) Micro Siemens per centimeter
\(^{0}\text{C} \) Degree Celsius
AAS Atomic Absorption Spectrophotometer
AC Alternating Current
ACGIH American Conference of Governmental Industrial Hygienists
AIPs Affected and Interested Parties
ALARP As Low As Reasonably Practicable
AoI Area of Influence
APHA American Public Health Association
a-Si Amorphous silicon
ASTM American Society for Testing and Materials
BOD Biological Oxygen Demand
Bscf Billion standard cubic feet
CdTe Cadmium telluride
CIGS Copper indium gallium selenide
cm Centimeter
CO Carbon monoxide
CO\(_2\) Carbon dioxide
COC Code of Conduct
COD Chemical Oxygen Demand
CSR Corporate Social Responsibility
CSP Concentrated Solar Power
CTMP Construction Traffic Management Plan
Cu Copper
dB Decibel
DC Direct Current
DCD Development Control Department
DFIs Development Finance Institutions
DO Dissolved Oxygen
EA Environmental Assessment
EHS Environmental, Health and Safety
EIA Environmental Impact Assessment
EMP Environmental Management Plan
EMS Environmental Management System
EnvAccord Environmental Accord Nigeria Limited
EPC Engineering, Procurement and Construction
EPSRA Electric Power Sector Reform Act
ESA Environmentally Sensitive Areas
ESIA Environmental and Social Impact Assessment
ESMP Environmental and Social Management Plan
EU European Union
Fe Iron
FEPA Federal Environmental Protection Agency
FGD Focus Group Discussion
FGN Federal Government of Nigeria
FMEnv Federal Ministry of Environment
g Gram
g/m² Gram per meter square
g/m³ Gram Per Meter Cube
GGJSS Government Girls Junior Secondary School
GHG Greenhouse Gases
GPS Global Positioning System
GRA Government Reservation Area
Ha Hectares
H₂S Hydrogen Sulphide
HC Hydrocarbon
HIV Human Immunodeficiency Virus (HIV)
HSE Health, Safety and Environment
HR Human Resources
HUB Hydrocarbon Utilizing Bacteria
HV High Voltage
ICEED International Centre for Energy, Environment and Development
IFC International Finance Corporation
IHR International Health Regulations
ILO International Labour Organization
ISO International Organization for Standardization
ITCZ Inter-Tropical Convergence Zone
ITDZ Inter-Tropical Discontinuity Zone
IUCN International Union of Conservation of Nature
kg Kilogram
kg/cm² Kilogram per centimeter square
km² Kilometer square
KVA Kilovolt Ampere
KW Kilo watt
KATSEPA Katsina State Environmental Protection Agency
LEMP Labour and Employment Management Plan
LFN Law of the Federal Republic of Nigeria
LGA Local Government Area
m Meter
mb/d Million barrels per day
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.</td>
<td>Maximum</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mg/l</td>
<td>Milligram per litre</td>
</tr>
<tr>
<td>MW</td>
<td>Mega watt</td>
</tr>
<tr>
<td>MWp</td>
<td>Megawatt peak</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>mc-Si</td>
<td>Multi-crystalline</td>
</tr>
<tr>
<td>mS/cm</td>
<td>Milli Siemens per Centimeter</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>MV</td>
<td>Medium voltage</td>
</tr>
<tr>
<td>MW</td>
<td>Mega watt</td>
</tr>
<tr>
<td>MWp</td>
<td>Mega Watt nominal power</td>
</tr>
<tr>
<td>NAAQS</td>
<td>Nigerian Ambient Air Quality Standard</td>
</tr>
<tr>
<td>NBET</td>
<td>Nigerian Bulk Electricity Trading</td>
</tr>
<tr>
<td>NEC</td>
<td>National Energy Council</td>
</tr>
<tr>
<td>NEP</td>
<td>National Policy on the Environment</td>
</tr>
<tr>
<td>NEPP</td>
<td>National Electric Power Policy</td>
</tr>
<tr>
<td>NERC</td>
<td>Nigerian Electricity Regulatory Commission</td>
</tr>
<tr>
<td>NESREA</td>
<td>National Environmental Standards and Regulations Enforcement Agency</td>
</tr>
<tr>
<td>NGEP</td>
<td>Nigerian German Energy Partnership</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organizations</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>NIMET</td>
<td>Nigerian Meteorological Agency</td>
</tr>
<tr>
<td>NPC</td>
<td>Nigerian Population Commission</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Oxides of Nitrogen</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>ODS</td>
<td>Ozone Depleting Substance</td>
</tr>
<tr>
<td>OPC</td>
<td>Organic Photovoltaic Cells</td>
</tr>
<tr>
<td>OSH</td>
<td>Occupational Safety and Health</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of Hydrogen (Hydrogen ion Concentration)</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>Poly-Si</td>
<td>Poly-silicon</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>ppt</td>
<td>Parts per trillion</td>
</tr>
<tr>
<td>P0₄</td>
<td>Phosphate</td>
</tr>
<tr>
<td>PS</td>
<td>Performance Standard</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
</tbody>
</table>
Q Quarter
REM Renewable Energy Masterplan
ROW Right of Way
SCADA Supervisory Control and Data Acquisition
SHE Safety, Health and Environment
SPM Suspended Particulate Matter
SOx Oxides of Sulphur
SO2 Sulphur dioxide
SOP Standard Operating Procedures
STDs Sexually Transmitted Diseases
TCN Transmission Company of Nigeria
TDS Total Dissolved Solids
THB Total Heterotrophic Bacteria
THF Total Heterotrophic Fungi
ToR Terms of Reference
tfsuc Trillion standard cubic feet
TFSC Thin-film solar cell
TSP Total Suspended Particulate
UN United Nation
UNEP United Nations Environment Programme
USEPA United State Environmental Protection Agency
UV Ultra-Violet
WHO World Health Organization
WMP Waste Management Plan
Zn Zinc
EIA PREPARERS

The EIA team consists of the following:

<table>
<thead>
<tr>
<th>Name and Qualification</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibrahim Salau (M.Sc. Chemical Engineering)</td>
<td>EIA Project Director</td>
</tr>
<tr>
<td>Emmanuel Agbanah-Owa (M.Sc. Environmental Toxicology)</td>
<td>EIA Project Manager/ Fauna Specialist</td>
</tr>
<tr>
<td>Atanda Olaogun (M.Sc. Environmental Chemistry)</td>
<td>Project Quality Assurance Manager</td>
</tr>
<tr>
<td>Funmi Olusegun (M.Sc. Environmental Chemistry)</td>
<td>Field Data Gathering (Groundwater Quality) and EIA report writing</td>
</tr>
<tr>
<td>Taofeek Eluwole (M.Tech., Geo-Information Technology)</td>
<td>Socio-Economic Survey/Geographic Information System (GIS)</td>
</tr>
<tr>
<td>Demola Olarinde (M.Sc. Analytical Chemistry)</td>
<td>Field Data Gathering (Air and Noise measurement)</td>
</tr>
<tr>
<td>Ezenna Mgbajah (M.Sc. Environmental Consultancy)</td>
<td>Field Data Gathering (Soil) and Report Writing</td>
</tr>
<tr>
<td>Christiana Ekweonu (M.Sc. Environmental Management)</td>
<td>EIA report writing</td>
</tr>
<tr>
<td>Chidinma Uzokwelu (B.Sc. Environmental Management)</td>
<td>Field Data gathering (groundwater quality)</td>
</tr>
<tr>
<td>Chinwe Ugwuzor (B.Sc. Botany)</td>
<td>Field Data Gathering (Flora)</td>
</tr>
<tr>
<td>Seun Olugbodi (M.Sc. Analytical Chemistry)</td>
<td>EIA report writing</td>
</tr>
<tr>
<td>Akeem Yekini (B.Sc. Electrical Engineering)</td>
<td>EIA report writing</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

Pan Africa Solar Limited (PASL) will like to thank the EIA Consultant – Environmental Accord Nigeria Limited (EnvAccord) for their commitment to the success of the EIA study.

We also thank the Federal Ministry of Environment, the Katsina State Ministry of Environment, and other stakeholders for their valuable contributions. In addition, we express our sincere appreciation to the OST Energy team for their technical support.
EXECUTIVE SUMMARY

Introduction
Pan Africa Solar Limited (PASL) proposes to construct, install and operate a Photovoltaic (PV) solar power plant and associated transmission infrastructure in Kankia, Kankia Local Government Area (LGA) of Katsina State, Nigeria. The proposed total capacity of the power plant is 80 Megawatt peak (MWp).

The site that has been identified for the establishment of the power plant is 120 hectares (ha) of land, located approximately 2.5 km away from Kankia town. The site was owned by the Katsina State Government until rights were granted to PASL in return for equity stake in the Project ownership. It was acquired in two tranches of 50 and 70 ha. Currently, the site is not enclosed or fenced.

In line with the requirements of the Environmental Impact Assessment (EIA) Act No 86 of 1992, the EIA Act CAP E12 Law of Federal Republic of Nigeria (LFN), 2004 and the requirements of the Development Finance Institutions (DFIs) such as the International Finance Corporation (IFC), a member of the World Bank Group, an EIA\(^1\) study has been undertaken for the proposed Project.

The EIA is an upgrade of the previous assessment conducted by PASL in 2013 for a proposed 20 MWp PV Solar Power Plant within the same project area. An EIA approval for the 20 MWp Power Plant was issued by the Federal Ministry of Environment (FMEnv) on June 16, 2014.

This study covers the entire life cycle of the Project (i.e. design, construction, operation, decommissioning, and closure) and it involves scoping and key issues identification, baseline environmental and socio-economic data gathering, identification and evaluation of impacts (including cumulative impacts, project risks and hazards), mitigation/management plan and stakeholder consultations.

Legal and Administrative Framework
The EIA has been carried out in line with the applicable legal and administrative framework. Some of these include EIA Act No 86 of 1992; EIA Sectoral Guidelines for Power Sector, 2014; Electric Power Sector Reform Act, 2005; IFC/World Bank Group Environmental, Health and Safety (EHS) Guidelines; IFC Performance Standards on Environmental and Social Sustainability, 2012, and the World Bank Operational Policy (OP) 4.03 on the use of Performance Standards for Private Sector Activities.

\(^1\) EIA is a nomenclature adopted in Nigeria in line with the requirements of the Federal Ministry of Environment. The term is, however, synonymous with Environmental and Social Impact Assessment (ESIA). This study covers both biophysical and socio-economic environment of the project site.
Overview of Project Proponent

PASL is a limited company incorporated in Nigeria in July 2012. The Company is a partnership between JCM Capital Limited and some individuals in Nigeria. JCM Capital is a Canadian-based private equity firm that focuses on the development of utility-scale clean power projects.

JCM has invested in and developed over 120 projects in Canada, South America and Africa. It works with a diverse set of stakeholders in the solar PV industry that makes the company an ideal partner for delivering utility-scale PV solar power.

Need for the Project

The proposed Project is justified primarily on the basis of the need by the Nigerian Government to improve efficiency, reliability and sustainability of the electricity industry as well as generate electricity from a renewable energy source in an environmentally sustainable manner. Countries worldwide are being strongly encouraged to increase their share of renewable energy generation due to concerns related to climate change and the unsustainable exploitation of natural resources such as gas, oil, and coal. Grid connected renewable energy is currently the fastest growing sector in the global energy market.

Renewable energy is recognized internationally as a major contributor in protecting the climate as well as providing a wide range of environmental, economic, and social benefits that will contribute towards long-term global sustainability.

Project Benefits

The potential benefits of the proposed Project include, amongst others:

- Use of renewable energy technology with no or minimal Greenhouse Gases (GHGs) emission.
- Increased electricity generation to the national grid.
- Direct and indirect employment opportunities (local and regional).
- Acquisition of new skills through technology transfer.
- Increased local and regional economy through award of contracts for Project development.
- Revenue generation to Nigerian Government at Federal, State and Local levels through, for example, taxes.

Envisaged Sustainability of the Project

Technical Sustainability: The design, construction and operation of the proposed Project will be handled by properly trained and experienced personnel according to the pre-established standards and procedures. Environmental Sustainability: All Project facilities shall be designed and constructed to keep environmental impacts at the minimum and acceptable levels;
all operations shall be carried out to conform to all relevant international and local environmental regulations and standards. Handling, storage and disposal of wastes shall be in accordance with the applicable local and international regulatory requirements.

Economic Sustainability: The design, construction and installation of the Project shall be funded by PASL with financial support from potential lenders. There are market opportunities for electricity that will be generated. The Project will provide employment opportunities and support the local communities. Revenue that would accrue from sales of power (electricity) generated from the Project would serve for the payment of staff and the procurement of maintenance materials and services.

Social Sustainability: A detailed Stakeholder consultation process has been carried out throughout the EIA process to assist in ensuring that all the identified stakeholders have had the opportunity to provide input into the Project planning process. This has also assisted in laying a good foundation for building long term relationships with the stakeholders.

PASL shall ensure that the stakeholder consultation process is sustained throughout the life of the Project. This will also include periodic reporting to the stakeholders including the potentially affected communities on the environmental and social performance of the Project.

Project Alternatives
The alternatives considered for the proposed Project include site alternatives, technology alternatives, alternative energy sources, no project option, delayed project option and go-ahead option.

Description of Proposed Project
The proposed Project entails the installation and operation of 80 MWp Photovoltaic power plant and associated transmission in Kankia, Kankia LGA of Katsina State, Nigeria. The Project will be a ground mounted solar PV module using polycrystalline silicon, or thin film PV technology on a fixed tilt mounting structure.

The Project is planned to be built in 2 phases. Phase 1 will have a capacity of approximately 34 MWp and Phase 2 is approximately 46 MWp. Construction of Phase 1 is planned to commence in Quarter 1 (Q1) 2016 and be in full operations in Q3 2016. Phase 2 is anticipated to be operational a year later (2017).

Electricity generated from the Project will be evacuated via a proposed high voltage power (transmission) line to the nearby existing Kankia substation.
EIA OF PROPOSED 80 MWp PHOTOVOLTAIC POWER PLANT PROJECT AND ASSOCIATED TRANSMISSION IN KANKIA, KATSINA STATE (DRAFT REPORT)

(situated approximately 4 km from the Project site) for transmission and distribution via the national network.

The key components associated with the PV power plant are as follows:
- PV modules
- Mounting structures
- Cabling
- DC-AC current inverters
- Transformers
- Medium Voltage (MV) & High Voltage (HV) Switchgear
- Electrical connection cabin
- Supervisory Control and Data Acquisition (SCADA) System
- Associated infrastructure and utilities, including:
 - Site security, including fencing
 - Buildings, including onsite substation, connection building, control building, guard cabin, and spare parts storage.
 - Access road and internal road network
 - Stormwater infrastructure and drainage system
 - Water supply infrastructure
 - PV power facility monitoring equipment
 - Telecommunication links
 - Meteorological station to record irradiation and site conditions

In addition, the Project will include construction of a dedicated project transmission line connecting the power plant to the Kankia substation. The line will extend approximately 1.1 km from the Project site to the existing Kano-Katsina 132 kV power line corridor and will follow this route for approximately 4 km to the Kankia substation.

The general development phases for the Project are categorised as follows:
- Pre-construction: mobilisation of equipment, materials and personnel to project site; establishment of laydown areas and construction camp; and site clearing and preparation.
- Construction and Installation: including civil works, electrical works, and installation of PV modules and associated infrastructure.
- Operation: Plant operation and routine maintenance.
- Decommissioning: Dismantling of equipment and associated facilities and site restoration.

It is anticipated that each construction phase of the Project will take approximately 8 months. Once the power plant is complete and operational, it is expected that it will have a lifespan of approximately 25 years. Measuring the performance of the PV power plant will be done remotely through the use of
telemetric monitoring. The proposed PV power facility would be decommissioned at the end of its projected 25 year operational life time. Alternatively, with regular maintenance, the facility could be upgraded, with the useful lifespan of the project extending beyond the design lifespan (25 years). At the end of Project life, all panels and major electrical components will be recycled. The disturbed land areas will be rehabilitated and replanted with indigenous vegetation.

It is envisaged that during each construction phase of the Project, about 200 people will be employed for a period of approximately 8 months. A total of about 20 job opportunities will arise during operation phase, including skilled and semi-skilled labour for a period of approximately 25 years. PASL will ensure that the workforce is engaged and managed in accordance with the requirements of the Nigerian Labour Act (1990), as well as the requirements of IFC Performance Standard 2 – Labour and Working Conditions. A Worker Health and Safety Plan will be developed for all phases of the Project and will be regularly updated and made appropriate to the project activities undertaken during each phase. A specific Waste Management Plan will also be developed as part of the implementation of the proposed Project.

Environmental Description of the Project Area

The description of existing biophysical and socio-economic environment of the Project’s area of influence covers the following: climate and meteorology; air quality and noise; geology and soil; hydrology and hydrogeology; groundwater quality; soil; terrestrial flora; terrestrial fauna; landuse; and socio-economic and health. Data and information for the description of the existing environmental conditions of the study area were obtained from desktop studies and field data gathering undertaken from October 17 to 21, 2014 (wet season survey) as well as subsequent laboratory analyses of field samples. Additional site visit was conducted from March 17 to 20, 2015. The existing environmental and social condition of the Project’s area of influence is summarized as follows:

Climate and Meteorology: The climate of Katsina State is the tropical wet and dry type (tropical continental climate). The wet season period is usually between April and October, while the dry season is experienced between November and March. The average annual rainfall in the area is about 600 mm. The mean monthly temperature in Katsina State is generally high, with the highest value of about 39.2°C. The lowest mean monthly wind speed in the Project area is about 4.92 m/s recorded in the month of October while the highest annual mean value of 8.78 m/s was recorded in the month of June. The maximum wind speed recorded in the Project area between 1989 and 2013 was 15.7 m/s.

Geology and Geomorphology: Kankia is underlain by Pre-cambrian complex. The initial geotechnical survey of the Project site revealed that the near-surface
ground of the area was formed of compacted fine-grained sediments, such as clays and silts and a conglomerate with lateritic matrix.

Hydrology and Hydrogeology: The Project area is generally lacking in natural surface water bodies or seasonal river beds. The surface run-off is largely expected to readily penetrate the surface soil locally or drain along the surface terrain through the central depression in the Project site.

Vegetation (Terrestrial Flora): The study area lies within the Sudan Savannah vegetation belt of Nigeria. The existing vegetation at the Project site and the surrounding environment is mostly characterised by shrubs, grasses and herbs which are typical of the Sudan Savannah ecosystem. Herbaceous species dominate the Project site; no farmlands are present on the project site. Based on the IUCN (International Union of Conservation of Nature) Red List of Threatened Species (IUCN, November 2014.3) classification, no critically endangered or endangered species were recorded in the Project area.

Wildlife (Terrestrial Fauna): Fauna species recorded in the Project's area of influence include: insects, arachnids and myriapods. The amphibian encountered in the wider study area of the Project site includes frog *Rana species*, *Xenopus species* and toads *Bufo regularis*. The reptilian fauna includes lizard *Agama agama*, *Snakes Natrix anoscopis* and mammals such as cattle, *Bos bos*. No spawning sites were encountered on the Project site. None of the fauna species recorded in the Project site and the surrounding environment belongs to the IUCN threatened category.

Air Quality and Noise: The concentrations of air quality parameters recorded in the Project site were generally below the national ambient air quality standards, and the World Health Organization (WHO) Air Quality Guidelines. The ambient noise level recorded in the study area ranged from 51.50 dBA to 70.90 dBA with an average value of 58.38 dBA.

Soil Quality: The dominant soil type within the project site is sandy clay based on the grain size analysis. The top and sub soil samples collected at twelve (12) sampling stations in the study area generally recorded low nutrient values. Heavy metals and hydrocarbon concentrations in the soil samples were either recorded in trace amount or below the detection limit of 0.001 mg/kg indicating the absence of heavy metal or hydrocarbon pollution.

Groundwater Quality: Groundwater samples were collected from four (4) existing boreholes and hand dug well in the study area. The results of physico-chemical and microbial properties of the water samples were compared with the FMEnv limits for drinking water and the WHO standards limits for potable water. The
concentrations of parameters analyzed in the groundwater samples were generally within the FMEnv and WHO prescribed limits. Heavy metals in the groundwater samples were recorded in trace concentrations.

Land Use: The land use cover of the Project site is majorly of two classes namely: bare soil and vegetation. The bare soil covers approximately 60 per cent of the total site and includes the drying bed (flood plain), footpaths and unpaved road. The soil varies from fine sandy to clay and lateritic.

The current land type along the proposed transmission corridor route (30 m width) consists of bare soil, grasses, shrubs, and a few farmlands (close to the Kankia substation, which is approximately 4 km from the Project site).

Heritage Sites: There were no culturally significant sites or heritage assets within the Project site and the immediate surrounding environment based on the information gathered from the local communities and Katsina State Ministry of Culture and Tourism, chance find survey, and desktop review of existing reports related to the project area.

Socio-economic and Health: The potentially affected communities within the proposed project’s area of influence in Kankia Local Government and their locations away from the Project site are as follows:

- Kafin Dangi (3.74 km north east),
- Kauyan Maina (2.98 km east),
- Galadima (1 km south west),
- Gachi (2.32 km south east), and
- Kankia (2.46 km south).

The main language spoken in the study area is Hausa, which is largely the general language of the northern Nigeria. Although, the Fulani people in the LGA speak both Fulani and Hausa languages. The population of the communities is predominantly made up of Hausas (95 per cent) and the dominant religion in the area is Islam. With the exception of Kankia and Galadima communities, the settlement pattern in the study area is largely rural in nature. The estimated population of each of the communities based on the information gathered during community engagement is as follows: Kauyan Maina (5,000), Kafin Dangi (10,000), Gachi (12,000), Galadima (25,000) and Kankia (28,000).

The communities have similar traditional systems of administration. Monarchies are a common form of government in Hausa land. The traditional head is usually referred to as the ‘Magajin’, and is supported by a number of village/ward heads. The communities in the study area are majorly into farming including arable and
livestock farming. The crops usually planted include maize, millet, guinea corn, cowpea and groundnut, most of which are in subsistence and commercial scales.

Katsina State Environmental Protection Agency (KATSEPA) is the authority in charge of waste management in the study area. The Agency is responsible for the collection, transportation and disposal of household wastes. On the whole, the rate of generation from households far exceeds the rate of collection of waste by KATSEPA. The results are that there is the presence of heaps of undisposed refuse. In order to reduce the volume of wastes, the local residents usually engage in open burning of the wastes. Some of the wastes are sometimes collected and taken to the farm and used as organic manure.

The major healthcare facility in the project area is the General Hospital in Kankia town. However, there is a Primary Health Care Centre in each of the remaining communities.

Impact Evaluation and Mitigation Measures

Potential environmental and social impacts (including health and safety) associated with the proposed Project were assessed. Impact significance was also determined. In determining the significance of impacts, the factors considered included: magnitude of impacts (which is a function of the combination of the following impact characteristics: extent, duration, scale and frequency); value/sensitivity/fragility and importance of relevant environmental and social receptors; legal/regulatory requirements; and public perceptions (based on stakeholders' consultation).

Recommended mitigation measures required to complement those incorporated in the Project design for the significant negative impacts were proffered while enhancement measures for the identified positive impacts were similarly presented. PASL will have principal responsibility for all the recommended mitigation and enhancement measures, but may delegate responsibility to its contractors where required and monitor the implementation.

The summary of the identified potential impacts and the recommended mitigation measures is provided as follows:

Potential Impact on Soil Quality: These include removal of top soil, soil compaction and instability, increased erosion and potential contamination from spills.

Mitigation Measures: Recommended measures to minimize soil degradation and soil contamination include:
Topsoil that is removed during the construction activities shall be reused within the site for ground levelling or backfilling.

Excavation works shall not be executed under aggressive weather conditions.

Stockpiles shall be appropriately covered to reduce soil loss as a result of wind or water erosion.

Disturbed areas shall be rehabilitated as soon as possible to prevent erosion.

Work areas shall be clearly defined and where necessary demarcated to avoid unnecessary disturbance of areas outside the development footprint.

Fuel, oil and used oil storage areas shall be contained in bunds of 110 per cent capacity of the stored material.

Spill containment and clean up kits will be available onsite and clean up from any spill will be appropriately contained and disposed of.

Potential Impact on Hydrology and Groundwater: Potential impacts to hydrology and groundwater include: increase in runoff from hardstanding areas, decrease in infiltration, increased sediment load along drainage channels as a result of erosion, potential contamination from spills, and decrease in groundwater quality.

Mitigation Measures: Recommended measures to prevent contamination of underground water resources include:

The Engineering, Procurement and Construction (EPC) Contractor will be required to design appropriate drainage system that takes due regards of the natural drainage system. Where roads intersect natural, defined drainage lines, suitably sized pipe culverts or drive through causeways shall be installed or constructed;

Fuel, oil and used oil storage areas will be contained in bunds of 110 per cent capacity of the stored material.

The EPC Contractor shall be required to develop a water conservation plan to identify opportunities to reduce water consumption, for both construction and operation phases of the project, and to reduce abstraction rate.

Waste receptacles shall be provided within a secured area for collection of solid wastes.

Potential Impact on Visual Amenity: Potential impacts to visual amenity include landscape alterations resulting in unpleasant changes in the visual character of the project area, obstructive increase in ambient lightning levels especially at night time.
Mitigation Measures: Recommended measures to prevent impacts to visual amenity include:

- PASL shall adopt responsible construction practices aimed at containing the construction activities to specifically demarcated areas, thereby limiting the removal of natural vegetation to the minimum.
- PASL shall rehabilitate all disturbed areas to acceptable visual standards.
- PASL shall maintain the general appearance of the facility in an aesthetically pleasing way.
- PASL shall ensure proper planning is undertaken regarding the placement of lighting structures, the usage of security and other lighting objects.

Mitigation Measures: Measures to minimize impact to terrestrial flora, fauna and avifauna include:

- PASL shall restrict vegetation clearing to areas required for construction activities and power plant installation.
- PASL shall ensure that a reasonable portion of the project site is left unclear to serve as a greening buffer zone.
- PASL shall revegetate impacted areas as soon as practical.
- PASL shall ensure that construction workers implement a ‘no deliberate kill’ policy of fauna throughout the construction period.
- PASL shall ensure that all new above ground transmission lines are marked with bird flight diverters along their entire length, to increase the visibility of the power lines;
- PASL shall use bird-safe transmission structures including insulation of electrical components thereby minimising the risks of collision and electrocution of birds.
- Disruption of any nest of avifauna species along the transmission route shall be avoided.
- The site fencing (where required) will be constructed in a manner which allows for the passage of small and medium sized mammals, at least at strategic places, such as along drainage lines or other areas of dense vegetation. The fence will be designed to protect the solar PV plant but also withstand any animal conflict.
- All construction and construction related activity will be restricted to demarcated areas.
- No unauthorized persons shall be allowed to the site.
- In order to reduce collisions of vehicles with fauna, a 30 km/hr speed limit will apply to all vehicles using the site.
Potential Impact on Air Quality: Impact on air quality of the project area may occur due to emission of gaseous and particulate pollutants to the atmosphere during construction activities. During operation, the PV Power Plant has negligible or minor impact on the ambient air quality of the Project area. PV panels do not generate GHG emissions.

Mitigation Measures: Recommended mitigation measures to minimize air emissions especially during construction phase include:
- PASL shall ensure that vehicles sizes are optimised to reduce the number of journeys required and most suitable delivery routes are identified.
- PASL shall ensure that site clearing equipment is shut down when not in use for extended period of time.
- PASL shall implement dust control methods such as the use of water suppression to minimize dust.
- PASL shall as much as possible ensure that EPC contractor operate only modern and well-maintained equipment and machinery for construction activities.

Potential Noise Impact: Impact on noise and vibration include general construction noise, annoyance and disturbance effects at noise sensitive receptors etc. Noise impact associated with the plant operation is considered minor.

Mitigation Measures: Recommended measures to minimize noise pollution and its attendant effects on the nearby sensitive receptors in the Project area especially during the construction include:
- PASL shall ensure construction vehicles and equipment are turned off when not in use.
- Ensure that engines and other noise making equipment are in good working order and well maintained, and that all have original noise suppression equipment (e.g. mufflers) intact and in good working order.
- Ensure that equipment and general construction activities are limited to normal working hours (8.00hr to 17.00hr during weekdays; and Saturdays between 10.00hr-16.00hr).
- Ensure that the major construction activities are limited to a particular area within the site.

Social Impacts: Potential social impacts include disruption of family structure and social networks; increase in level of crime and drug and alcohol abuse, increase in incidence of sex workers, casual sexual relations which may result in Sexually Transmitted Infections (e.g. HIV/AIDS) and unwanted pregnancies, and general elevated safety risks.

Mitigation Measures: Measures to minimize or prevent social impacts include:
The EPC Contractor will develop an induction programme, including a Code of Conduct (CoC), for all workers (including contractors and their workers) prior to construction activities.

A copy of the CoC will be presented to all workers and signed by each person. Adequate training/explanations will be provided to workers on its contents. The CoC will address the following aspects, amongst others:
- respect for the norms and values of local communities;
- no hunting or unauthorised taking of products or livestock;
- zero tolerance of illegal activities by construction personnel including: unlicensed prostitution and/or solicitation; illegal sale or purchase of alcohol; sale, purchase or consumption of drugs; illegal gambling or fighting;
- compliance with the Traffic Management Plan and all road regulations;
- description of disciplinary measures for infringement of the CoC.

Grievance procedure that is easily accessible to local communities shall be developed, through which complaints related to contractor or employee behaviour can be lodged and responded to. A Community Liaison Officer shall be engaged.

PASL shall ensure that the EPC Contractor develops a means of monitoring access to the site, prohibiting unauthorized access to the site and ensuring that all visitors report to the site office.

No employment will take place at the entrance to the site. Only formal channels for employment will be used, and recruitment shall take place only at designated times and locations.

PASL through its EPC Contractor shall develop and implement an HIV/AIDS policy and information document for all workers directly related to the project. The information document will address factual health issues around the transmission and infection of HIV/AIDS.

Warning and safety signs shall be installed at strategic locations within the Project site.

A 24-hour security arrangement shall be put in place to prevent unauthorized access to site.

PASL shall ensure that only competent contractors are employed for construction activities, while at the same time effecting adequate supervision of project during and after installation.

Impacts on Existing Infrastructure (Road): Anticipated impacts on infrastructure (road) include disruption to road access from project vehicles; traffic accident.

Mitigation Measures: PASL shall develop and implement a Construction Traffic Management Plan to mitigate the potential impacts arising from the anticipated changes in the traffic pattern of the area due to the proposed project activities.
Health, Safety and Welfare of Workers and Staff: Risk of injury, health and safety related issues including poor welfare conditions, exposure to injuries, electric shock, rights denial etc.

Mitigation Measures: Health and Safety issues will be managed through the development and implementation of a robust Health and Safety (H&S) Management Plan by the EPC Contractor, including emergency plan. Staff shall be trained on emergency preparedness and responses. The H&S Plan will be developed following all relevant national and international standards, including applicable IFC Performance Standards.

In addition, human resources policy and procedures relevant to the scale of the Project will be developed and implemented. The HR policy will include the following key issues, among others:

- Provision of clear and understandable information regarding rights under national labour and employment law, and any applicable collective agreements, including those related to hours of work, wages, overtime, compensation, etc.
- Provision of employment, compensation/remuneration and working conditions, including working hours, terms of employment, based on equal opportunity and fair treatment, avoiding discrimination on any aspects.
- Retrenchment policy including alternatives analysis prior to decision.
- Implementation of a grievance mechanism.
- Adoption and implementation of a sexual harassment policy.
- Adoption of open attitude towards freedom of association.

Environmental Management Plan

An Environmental Management Plan (EMP) has been developed to satisfy long term objectives of managing and monitoring the environmental and social impacts (including health and safety) of the proposed Project. The EMP has been developed to meet international and national standards on environmental and social management performance. It covers the pre-construction, construction, operation and decommissioning phase of the Project. The plan details the mitigation and enhancement measures PASL has committed to implement throughout the life span of the proposed Project and also includes desired outcomes; performance indicators; monitoring; timing for actions; responsibilities and cost estimates required for implementation of recommended mitigation measures, monitoring of the performance indicators and capacity building. The estimated cost for EMP implementation is in the range of 50,000 – 80,000 US Dollar.

EMP is a nomenclature adopted in Nigeria in line with the national (local) guidelines and regulations. The EMP however covers both the biophysical and socio-economic environment and it is synonymous with ESMP (Environmental and Social Management Plan).
Additional detailed policies and plans will be developed to support the implementation of the EMP. The timing of the development of the plans may be staged, ensuring that the appropriate focus and level of detail is provided for construction and operational activities. Where required, the documents will be finalized by PASL in consultation with FMEnv, Katsina State Ministry of Environment, KATSEPA and other key stakeholders. The documents will be prepared strictly in line with the requirements set out in the relevant IFC Performance Standards and the World Bank/IFC EHS policies and guidelines as well as other applicable local regulations and guidelines.

The additional management plans required for the proposed Project include:

- Local and Employment Management Plan;
- Waste Management Plan
- Site Security Plan
- Construction Traffic Management Plan
- Health and Safety Management Plan
- Human Resources Management Plan
- Corporate Social Responsibility (CSR) Plan
- Emergency Response Plan
- Land Acquisition Plan for Transmission Right of Way
- Site Closure and Restoration Plan.

A Stakeholder consultation process has been executed throughout the EIA process to assist in ensuring that all stakeholders relevant to the project including affected communities have had the opportunity to provide input into the Project planning process. A Stakeholder Engagement Plan has been developed and included as part of this report. PASL will sustain the on-going consultation and engagement with the stakeholders throughout the life cycle of the project.

Decommissioning and Abandonment

Decommissioning refers to the process of dealing with the dismantling and/or removal of all operating assets of the Project after completion of the operating life cycle. The proposed 80 MWp PV Power Plant is being developed for a projected 25-year operational lifetime. In the event of decommissioning, PASL shall ensure that the decommissioned site is returned to its original environmental condition or better, following the dismantling and removal of equipment and plant structures. All panels and major electrical equipment will be recycled at the end of their useful lives. The decommissioning and abandonment programme shall be managed by a team of competent personnel including the representatives of Katsina State Ministry of Environment and other relevant stakeholders.
Conclusion

The EIA of the proposed PV power plant and associated transmission infrastructure has been undertaken in line with the local and international regulations and guidelines. The study identified both potential positive and negative impacts associated with the proposed development.

The positive implications of establishing the solar power plant project on the identified site in Kankia, Kankia LGA of Katsina State include:

- The potential to harness and utilize solar energy resources.
- The National electricity grid in Katsina State would benefit from the additional 80 MWp power (electricity) to be generated.
- Promotion of clean, renewable energy.
- Creation of local employment, business opportunities and skills development in the Project area.

The potential negative effects identified were mostly of minor to moderate significance. The significance of the majority of identified negative impacts can generally be reduced by implementing the recommended mitigation measures including good industry practices. There are no human uses of the Project site that will be permanently displaced and no relocation of community residents is required. There are no culturally significant sites or heritage resources within the project area that would be negatively impacted. No environmental fatal flaws were identified with the establishment of the proposed power plant. The most significant threat to avifauna communities would be from collisions with the overhead power line. The loss of habitat, disturbance, or any interaction with the facility is not anticipated to have a significant negative impact on bird communities in the area. The anticipated visual impact is not considered to be a fatal flaw from a visual perspective, considering the low incidence of visual receptors in the contained area of potential visual exposure.

Based on the nature and extent of the proposed Project, the local level of disturbance predicted as a result of the construction and operation of the solar power plant and associated infrastructure, the findings of the EIA, and the understanding of the significance of the potential environmental impacts, it is believed that the potential negative impacts associated with the proposed Project can be mitigated to an acceptable level. Also, an EMP has been established to assess the efficiency and the effectiveness of the mitigation measures and long-term monitoring of the Project.

PASL will ensure the proposed Project is developed and operated in an environmentally sustainable manner by properly managing the processes/activities that may bring about disturbances to the environment through the implementation of the recommended mitigation measures.
CHAPTER ONE:

INTRODUCTION
CHAPTER ONE

INTRODUCTION

1.1 Background Information

Pan Africa Solar Limited (PASL) proposes to construct, install and operate a Photovoltaic (PV) Power Plant in Kankia, Kankia Local Government Area (LGA) of Katsina State, Nigeria (the Project). The Project will be built in two (2) phases with a proposed total capacity of 80 Megawatt nominal power (MWp). Phase 1 of the Project will have a capacity of approximately 34 MWp and is planned to commence in Quarter 1 (Q1) of 2016 with full operation in Q3 of 2016. Phase 2 is anticipated to be operational a year later (2017).

The Project site, occupying approximately 120 hectares (ha) of land, was owned by Katsina State Government until rights were granted to PASL in return for equity stake in the Project ownership. The site was acquired in two tranches of 50 ha and 70 ha. A copy of certificate of occupancy for the site issued by the State Government is provided in Appendix 1.

Under the provision of the Nigeria Environmental Impact Assessment (EIA) Act No 86 of 1992 (EIA Act CAP E12 Law of Federal Republic of Nigeria, 2004) and the requirements of the Development Finance Institutions (DFIs) such as the International Finance Corporation (IFC), an EIA study has been undertaken for the Project. This report documents the findings of the EIA study.

The EIA is an upgrade of the previous study conducted by PASL in 2013 for a proposed 20 MWp PV Solar Power Plant within the same project area. An EIA approval for the 20 MWp was issued by the Federal Ministry of Environment (FMEnv) on June 16, 2014 (refer to Appendix 2).

However, between the time of the previous EIA in 2013 and now (2015), there have been modifications to the proposed Project which include:

- An increase in the capacity of the PV Solar Power Plant from 20 MWp to 80 MWp;
- An increase in the Project land take from 30 ha to 120 ha; and
- A change in the Project design.

In view of these modifications, an EIA upgrade is considered necessary to ensure that the potential environmental, social and health issues associated with the Project are identified, assessed and adequately mitigated and monitored.
This EIA study covers the entire life cycle of the Project (i.e. design, construction, operation, decommissioning, and closure).

1.2 Project Proponent

PASL is a limited company incorporated in Nigeria in July 2012. The Company is a partnership between JCM Capital Limited and some individuals in Nigeria. JCM Capital is a Canadian-based private equity firm that focuses on the development of utility-scale clean power projects. Basically, JCM:

- Has invested in and developed over 120 projects in Canada, South America and Africa. It works with a diverse set of stakeholders in the solar PV industry that make the company an ideal partner for delivering utility-scale PV solar power. It credits its success to identifying key renewable energy markets and building long-term strategic partnerships.

- Works with local development teams to take solar projects from concept to construction. It has a strong solar development track record, with experience developing over 70 ground mount and rooftop projects and more than 400 MWp in Africa, Latin America and North America.

- Plays an important role in the development of solar generation in emerging markets.

- Works with local teams in Africa and Latin America at the earliest stages of project development. It leverages its extensive financial, operational, development, legal and regulatory experience in order to take projects through the entire development, construction and operational life-cycle.

OST Energy is providing technical advisory services to PASL/JCM to assist in the development of the proposed Project. The Company is an award winning, independent technical consultancy firm specialises in solar, wind, biomass and renewable energy projects. OST Energy is at the cutting edge of multi MW solar photovoltaic (PV) development and portfolios with the directors and employees, having advised investors on over 6 GW of under construction and operational plants worldwide.

1.3 Project Location

The Project is planned to be sited on a 120 ha of land in Kankia, Kankia LGA of Katsina State, Northwest geo-political zone of Nigeria (Figures 1.1 to 1.3). The Project site is located approximately 100 m west away from Katsina-Kano
Expressway (popularly known as IBB Way) in Kankia. The site can easily be accessed through the Expressway as illustrated in Figure 1.4.

The Kankia community, the major town in the Project area, is located approximately 2.5 km south of the Project site. There are no residential buildings and farmlands within the entire 120 ha site. Details of the Project site description are provided in Chapter 3 of this report.
Figure 1.1: Administrative Map of Nigeria highlighting Katsina State
Figure 1.2: Administrative Map of Katsina State highlighting Kankia LGA
Figure 1.3: Administrative Map of Kankia LGA showing the Project Site
Figure 1.4: Map of the Project site and the nearby existing roads
1.4 EIA Objectives

The EIA study has been carried out to identify and evaluate potential environmental, social and health impacts associated with the entire life cycle of the proposed Project with a view to mitigating the identified negative impacts and enhancing the beneficial impacts. This will ensure that the Project is developed and operated in a sustainable manner.

Specifically, the objectives of the EIA are to:

- Assist Project design and planning by identifying and quantifying those aspects of location, construction, operations and decommissioning which may cause adverse environmental, social, health and economic effects.
- Establish the existing state of the Project environment and identify any sensitive components of the environment.
- Recommend measures during construction, commissioning, operations and decommissioning to avoid and mitigate adverse effects and enhance beneficial impacts.
- Develop an appropriate Environmental Management Plan (EMP) for the Project including monitoring programme.
- Provide the basis for co-operation, consultation and compliance with regulatory authorities and other stakeholders.
- Prepare a detailed report presenting clear and concise information on the findings of the EIA.

1.5 EIA Process

Where applicable at this stage of the study, the EIA has been carried out in line with the National EIA Procedural Guidelines issued by the FMEnv. The entire process is summarized below in Figure 1.5.
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission of Project Proposal and Terms of Reference (TOR) for EIA study by the Proponent to FMEnv</td>
<td>Registration (Payment of Registration Fee)</td>
</tr>
<tr>
<td>Initial Environmental Evaluation (IEE) which includes site verification</td>
<td>Screening</td>
</tr>
<tr>
<td>Scoping Workshop by proponent, regulators & stakeholders</td>
<td>Scoping</td>
</tr>
<tr>
<td>Approval of TOR by FMEnv</td>
<td>By a registered Consultant</td>
</tr>
<tr>
<td>Execution of EIA</td>
<td>Payment of Initial Processing</td>
</tr>
<tr>
<td>Submission of Draft EIA Report</td>
<td>Include:</td>
</tr>
<tr>
<td>Review of Draft EIA report by</td>
<td>- In-house review</td>
</tr>
<tr>
<td>Approval/Disapproval of EIA of the project</td>
<td>- Technical/Panel review</td>
</tr>
<tr>
<td>Impact Mitigation Monitoring by FMEnv and relevant regulators</td>
<td>- Public review (21 days display)</td>
</tr>
<tr>
<td>Proponent submits the Final EIA Report to FMEnv</td>
<td></td>
</tr>
<tr>
<td>Approval of Final EIA Report by FMEnv</td>
<td></td>
</tr>
<tr>
<td>Environmental Audit</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.5: Overview of Nigeria EIA Process
(Source: FMEnv 1994)
The EIA is carried out in a stepwise manner through a number of key phases as follows:

- Scoping;
- Baseline studies;
- Stakeholder engagement;
- Potential impact identification and evaluation; and
- Mitigation and management plan.

1.5.1 Scoping
Scoping is an essential element of a standard EIA. It helps to identify the potentially significant environmental and social issues relating to the design, construction, operation, and decommissioning of a project that should be addressed as part of EIA. This will enable the developer to address the key issues from the onset and also allow early recognition of these issues in the design and evolution of the project.

The process also facilitates the ‘scoping out’ of aspects that would not be expected to experience significant adverse impacts. Ultimately, it helps define the scope for the EIA, which will examine and report the full suite of impacts associated with the project. Scoping also provides opportunity for early consultation with stakeholders.

The objectives of scoping undertaken as part of the EIA study for the proposed Project are to:

- Provide an overview description of the Project;
- Identify the key stakeholders, their concerns and values;
- Review the existing environmental and socio-economic characteristics of the Project area and identify data gaps;
- Undertake a preliminary assessment of the potential environmental and socio-economic impacts associated with the Project;
- Set requirements for additional baseline environmental data;
- Obtain early input from key stakeholders in the identification of potential impacts and mitigation measures.

The stakeholders that were consulted during the scoping phase of the EIA are highlighted in Table 1.1. A scoping workshop was held on October 16, 2014 at Al-Bhustan Hotels, 15 Yahaya Madaki Way, Katsina, Katsina State. The workshop provided opportunities to the stakeholders to contribute to the EIA scope of work. In addition, a town hall meeting was held on October 20, 2014 at the palace of “Kankia Magajin” (the district head of Kankia). Detailed information about the
scoping workshop and other stakeholder engagement activities carried out during the EIA study is documented in Chapter 4.

Table 1.1: List of Stakeholders consulted during Scoping

<table>
<thead>
<tr>
<th>Stakeholder Group and Interest in the proposed Project</th>
<th>Stakeholder Name</th>
<th>Stakeholder Level</th>
<th>Connection to the Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Authorities</td>
<td>Federal Ministry of Environment (FMEnv)</td>
<td>National</td>
<td>National government authorities are of primary importance in terms of establishing policy, granting permits or other approvals for the Project, and monitoring and enforcing compliance with Nigerian law throughout all stages of the Project lifecycle.</td>
</tr>
<tr>
<td></td>
<td>Nigerian Electricity Regulatory Commission (NERC)</td>
<td>National</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nigerian Bulk Electricity Trading (NBET) Plc.</td>
<td>National</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmission Company of Nigeria (TCN), Kankia, Katsina</td>
<td>National</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Environment</td>
<td>National</td>
<td>Katsina State and Kankia local authorities were informed of progress and plans in their areas to consider the Project in their regulatory functions.</td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Lands, Housing and Urban Development</td>
<td>National</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kankia Local Government Authority</td>
<td>National</td>
<td></td>
</tr>
<tr>
<td>Potentially Affected Communities³</td>
<td>Kafin Dangi, Kauyan Maina, Galadima, Gachi and Kankia communities within the Project’s area of influence.</td>
<td>National</td>
<td>Communities that may be directly or indirectly affected by the proposed Project and its activities.</td>
</tr>
<tr>
<td>Non-Governmental Organizations (NGOs)</td>
<td>International Centre for Energy, Environment and Development (ICEED)</td>
<td>National</td>
<td>NGOs with direct interest in the Project, and its social and environmental aspects that are able to influence the Project directly or through public opinion.</td>
</tr>
</tbody>
</table>

Source: EnvAccord Scoping Study, 2014

³ The distance and orientation of each of the potentially affected communities to the Project site is as follows: Kafin dangi (3.74 km north east); Kauyan Maina (2.98 km east), Galadima (1 km south west), Gachi (2.32 km south east) and Kankia (2.46 km south). Details about the socio-economic characteristics of the communities are provided in Chapter 4.
1.5.2 Baseline Studies/Field Survey
The objective of baseline studies is to characterize the existing environmental and socio-economic resources and conditions of the Project site and the surrounding environment. The baseline field survey of the Project area was conducted from October 17 to 22, 2014 (wet season survey) to complement the previous study carried out in 2013 within the project area. Additional site visit was also conducted from March 17 to 20, 2015. The detailed information on the existing environmental and socio-economic conditions of the Project area is presented in Chapter 4.

1.5.3 Impact Identification and Evaluation
The potential and associated impacts of the Project were assessed and documented in Chapter 5. The impact assessment approach has the following main components:

- Identification of potential impacts associated with the planned Project activities (including unplanned events) on the environmental and social receptors;
- Evaluation of the significance of the potential impact (which is a function of impact magnitude and sensitivity/importance of receptors);
- Development of mitigation measures to manage potentially significant impacts; and
- Evaluation of the significance of the potential residual impact.

1.5.4 Mitigation and Management Plans
Mitigation measures provided for the identified potentially significant adverse impacts were based on scientific conclusions, professional judgement, and applicable guidelines and regulations. Similarly, the EMP provided in this EIA consists of the set of management, mitigation and monitoring measures to be implemented throughout the life cycle of the Project.

1.6 Legal and Administrative Framework
This section presents the legislation and policy context as well as environmental and social standards that are deemed applicable to the Project and the EIA study. Specifically, this section provides a summary of:

- Relevant administrative structures;
- Relevant environmental and social policies and legislations;
- Applicable environmental regulations and standards; and
- Relevant international conventions and standards.
1.6.1 Administrative Structures

1.6.1.1 Federal Ministry of Environment (FMEnv)

In Nigeria, the FMEnv is the primary authority for the regulation of environmental laws, specifically the National Policy on the Environment (NPE) 1989, (revised 1999). The NPE is the overarching legislative framework for environmental management in Nigeria.

In furtherance of its mandate to ensure the overall protection of the environment and conservation of natural resources, the FMEnv has developed environmental guidelines and regulations on various sectors of the national economy. These include, amongst others:

- Environmental Impact Assessment Sectoral Guidelines for Power Sector, 2014

1.6.1.2 National Environmental Standards and Regulations Enforcement Agency (NESREA)

The National Environmental Standards and Regulations Enforcement Agency (NESREA) was established in 2007 by the Federal Government of Nigeria as a parastatal of the FMEnv. The Agency is charged with the responsibility of enforcing all environmental laws, guidelines, policies, standards and regulations in Nigeria, specifically during operation phase of development projects.

The NESREA regulations relevant to the proposed Project are:

- National Environmental (Electrical/Electronic Sector) Regulations, 2011
- National Environmental (Sanitation and Wastes Control) Regulations, 2009
- National Environmental (Noise Standards and Control) Regulations, 2009
- National Environmental (Soil Erosion and Flood Control) Regulations 2011
- National Environmental (Surface water and Groundwater Quality Control) Regulations 2011
- National Environmental (Protection of Endangered Species in International Trade) Regulations, 2011
1.6.1.3 Federal Ministry of Power

1.6.1.4 Nigerian Electricity Regulatory Commission (NERC)
The Nigerian Electricity Regulatory Commission (NERC) is an independent regulatory agency inaugurated on October 31, 2005. The Commission is mandated to carry out the following, amongst others:

- Monitor and regulate the activities of the electricity industry in Nigeria,
- Issue licenses to market participants, and
- Ensure compliance with market rules and operating guidelines.

1.6.1.5 Nigerian Bulk Electricity Trading Plc. (NBET)
The Nigerian Bulk Electricity Trading Plc. (NBET) is a Federal Government of Nigeria (FGN) owned public liability company. NBET (also called the Bulk Trader) was incorporated on July 29, 2010 to engage in the purchase and resale of electrical power and ancillary services from independent power producers and from the successor generation companies.

1.6.1.6 Transmission Company of Nigeria (TCN)
TCN oversees the transmission of generated power to the national grid. In the Project location, Kankia TCN is responsible for the transmission of electricity in Kankia LGA of Katsina State. Details on the power evacuation process for the Project are presented in Chapter 3.

1.6.1.7 Katsina State Ministry of Environment and Katsina State Environmental Protection Agency
Katsina State Ministry of Environment is the state regulatory authority in charge of environmental protection. A parastatal of the Ministry is the Katsina Environmental Protection Agency (KATSEPA), which is responsible for the collection and disposal of domestic and industrial wastes, amongst other functions. The KATSEPA was established by Edict No 4 of 1994.

Other functions of the Ministry include:

- Ensuring that all development projects comply with EIA and other relevant regulations guiding development activities in the state.
- Co-operate with the FMEnv and other relevant regulatory agencies in the promotion of environmental education.
1.6.1.8 Kankia Local Government Area
The Project site is primarily under the jurisdiction of the Kankia LGA of Katsina State. The LGA has an Environmental Health Department which ensures compliance with environmental sanitation law.

1.6.2 Nigerian Environmental Policy and Legislation
The local environmental policy requirements applicable to the Project are summarized in the following paragraphs:

1.6.2.1 National Policy on the Environment (NEP) 1989 (Revised 1999)
Environmental management in Nigeria is based on the National Policy on the Environment (1989), revised in (1999). The Policy states that Nigeria is committed to safeguarding the country’s natural and built environment for the use of present and future generations. This commitment demands that efficient resource use and the reduction of environmental impacts is a core requirement of all developmental activities. The strategic objective of the NEP is to coordinate environmental protection and natural resources conservation for sustainable development. This goal is to be pursued by the following objectives:

- Securing a quality of environment adequate for good health and well-being;
- Promoting sustainable use of natural resources and the restoration and maintenance of the biological diversity of ecosystems;
- Promoting an understanding of the essential linkages between the environment and economic development and encouraging individual and community participation in environmental improvement initiatives;
- Raising public awareness and engendering a national culture of environmental preservation; and
- Partnering among stakeholders including governments at all levels, international institutions and governments, non-governmental agencies and communities.

The action plans to achieve these policy objectives include considering environmental aspects in major economic decision making processes, building an integrated environmental management approach into major development projects and employing suitable economic instruments and environmental reporting.

In addition, the policy requires that the best practicable environmental technology is applied in major economic activities. The policy also specifies that an EIA is mandatory for major development projects.
1.6.2.2 EIA Act No 86 of 1992
The EIA Act No 86 of 1992 is the primary regulation governing EIAs in Nigeria. The Act was promulgated in order to enable the prior consideration of an EIA on specified public or private projects. The Act sets out the procedure to be followed and methods to be used in undertaking an EIA. Section 2 (2) of the Act requires that where the extent, nature or location of a proposed project or activity is such that it is likely to significantly affect the environment, an EIA must be undertaken in accordance with the provisions of the Act.

1.6.2.3 Environmental Impact Assessment Sectoral Guidelines for Power Sector, 2014
These guidelines have been developed by the FMEnv to assist proponents in conducting detailed environmental assessment with regards to power projects in Nigeria. Amongst others, the guidelines include potential impacts associated with solar power projects and the suggested mitigation measures.

1.6.2.4 Harmful Waste (Special Criminal Provisions) Act No 42 of 1988
The Harmful Waste (Special Criminal Provisions) Act No 42 of 1988 prohibits and declares unlawful all activities relating to the purchase, sale, importation, transit, transportation, deposit, storage of harmful wastes. Appropriate penalties for contravention are prescribed.

1.6.2.5 The Nigerian Urban and Regional Planning Act 1992
Act 88 of 1992 established a Development Control Department (DCD) charged with the responsibility for matters relating to development control and implementation of physical development plans at Federal, State and Local Government levels within their respective jurisdiction.

The Katsina State Ministry of Lands, Housing and Urban Development is charged with the responsibility for land related matters in the state. The Ministry requires that a land permit is obtained for any physical development in Katsina State. The Certificate of Occupancy for the proposed Project site is contained in Appendix 1 to this report.

1.6.2.6 Endangered Species Act 1985
The Federal Government of Nigeria enacted the Endangered Species (Control of International Trade and Traffic) Act 11, 1985 which makes amongst others, provisions for the conservation, management and protection of some of the country’s endangered species. Section 1 of the Act prohibits the hunting, capture and trade of endangered species.
1.6.3 **Nigeria Power Sector Laws**

1.6.3.1 **Electric Power Sector Reform Act 2005**
The Electric Power Sector Reform Act No. 6 of 2005 provides for the licensing and the regulation of the generation, transmission, distribution and supply of electricity.

Part IV of the Act contains requirements for licensing and stipulates that no person may construct, own or undertake any of the following activities without a license, unless the generating capacity and distribution capacity is below 1 MW and 100 kilowatts (KW) respectively for electricity generation, excluding captive generation, electricity transmission, system operation, electricity distribution and trading in electricity.

1.6.3.2 **Electricity Amendment Act No 28 of 1998**
The Electricity Amendment Act No. 28 of 1998 was promulgated in order to deregulate the power sector in Nigeria and allows for competition in the power sector of Nigeria. The Act provides for both national and international investors interested in the sale of electricity to compete favourably in power generation, distribution and supply.

1.6.3.3 **National Energy Policy 2003**
The provisions of this Policy relevant to the proposed Project are:

- The Nation shall aggressively pursue the integration of solar energy into the energy mix;
- The Nation shall keep abreast with worldwide developments in solar energy technology; and
- Development of the market for solar energy technologies.

1.6.4 **Nigerian Social Legislation**
The summary of Nigerian social legislation applicable to the Project is provided as follows:

1.6.4.1 **The Nigerian Cultural Policy (1996)**
The national cultural policy is generally regarded as an instrument of promoting national identity and Nigerian unity.

Katsina State has no listed United Nations Environment Programme (UNEP) World Heritage sites. In addition, there are no known nationally protected cultural resources within the Project site and its surrounding environment up to approximately 5 km radius based on desktop review, reconnaissance survey and baseline field survey.
1.6.4.2 Labour Act
The Labour Act (1990) is the primary law protecting the employment rights of individual workers. The Labour Act covers protection of: wages; contracts; employment terms and conditions; and recruitment. It also classifies workers and special worker types. Union membership is governed by the Trade Union Amendment Act (1995). A 1999 constitution includes stipulation of “equal pay for equal work without discrimination on account of sex, or any other ground whatsoever”.

1.6.4.3 Factories Act
The Factories Act 1990 is the primary law regulating the health, safety and welfare of workers in the country’s factories.

With respect to safety, there are general provisions as to the securing, fixing, usage, maintenance and storage of machinery, unfenced machinery, and other lifting machines. There are, in addition to these, standards set for the training of workers, safe access to any work place, first aid boxes, prevention of fire, and safety arrangements in case of fire.

The law requires that all accidents and industrial diseases be notified to the nearest inspector of factories and be investigated.

1.6.4.4 Land Use Act
The Land Use Act of 1978, the Constitution of 1999 and the Public Lands Acquisition Laws of the relevant states constitute the governing policy for land acquisition in Nigeria. As it is the case with most National and State laws on acquisition of land in the public interest or for a public purpose, the legislation enables the state to acquire land. The Acts also specify the procedures the state must follow to clear the land, and define the compensatory measures the state must implement in order to compensate the affected people.

The proposed Project does not involve physical and economic resettlements. Details of land acquisition process for the Project are provided in Chapter 2.

1.6.4.5 Public Health Law
This provides justification for the execution of developmental projects under guidelines that promote health by protecting the environment and safeguarding the humans’ health. The Public Health Laws empower Medical Officers of Health (operating at the local government council, under the supervision of the State and Federal Ministries) to ensure the promotion of good health.

1.6.4.6 Public Participation and Disclosure
To a large extent, public authorities are required to inform the public of environment-related issues. Section 55 of the EIA Act 86 of 1992 provides for the
maintenance of a Public Registry for the purpose of facilitating public access to records relating to environmental assessments.

Also, members of the public and persons requiring clarifications on environmental issues can visit the offices of the FMEnv or the relevant State environmental agency for environment-related information. Public hearings to which interested members of the public are invited are a key part of the approval process for EIA reports by the FMEnv.

1.6.5 National Regulations and Standards

The national regulations and standards relevant to the implementation of activities under the Project are:

1.6.5.1 National Environmental Protection (Effluent Limitation) Regulations, 1991

The National Environmental Protection (Effluent Limitation) Regulations, S.I.8 of 1991 make it mandatory for industries to install anti-pollution and pollution abatement equipment on site. The regulation is specific to each category of waste generating facility with respect to limitations of solid and liquid discharges or gaseous emissions into the ecosystem.

1.6.5.2 National Environmental Protection (Pollution Abatement in Industries and Facilities Generating Wastes) Regulations, 1991

1.6.5.3 National Environmental Protection (Management of Solid and Hazardous Wastes) Regulations, 1991

1.6.5.4 National Environmental (Sanitation and Wastes Control) Regulations, 2009 (S.I.28)

The purpose of this regulation is the adoption of sustainable and environment friendly practices in environmental sanitation and waste management to minimize pollution.
1.6.5.5 **National Environmental (Ozone Layer Protection) Regulations, 2009 (S.I.32)**

This regulation prohibits the use, emission, storage and disposal of stratospheric ozone depleting substances (ODS) and articles which contain those substances.

1.6.5.6 **National Environmental (Noise Standards and Control) Regulations, 2009 (S.I.35)**

This regulation highlights the permissible noise levels to which a person may be exposed; control and mitigation of noise; permits for noise emissions in excess of permissible levels; and enforcement.

1.6.5.7 **National Environmental (Soil Erosion and Flood Control) Regulations, 2010 (S.I.12)**

The overall objective of this regulation is to check all earth-disturbing activities, practices or developments for non-agricultural, commercial, industrial and residential purposes.

1.6.5.8 **National Environmental (Control of Bush/Forest Fire and Open Burning) Regulations, 2010 (S.I.15)**

The principal thrust of this regulation is to prevent and minimize the destruction of ecosystem through fire outbreak and burning of any material that may affect the health of the ecosystem through the emission of hazardous air pollutants.

1.6.5.9 **National Environmental (Surface and Groundwater Quality Control) Regulations, 2010 (S.I.22)**

The purpose of this regulation is to enhance and preserve the physical, chemical and biological integrity of the groundwater and surface water resources.

1.6.5.10 **National Environmental (Protection of Endangered Species in International Trade) Regulations, 2011**

The purpose of this regulation is to protect endangered species of fauna and flora and prevent their extinction by controlling international trade in their living specimens, parts and derivatives.

1.6.6 International Guidelines and Conventions

1.6.6.1 **International Guidelines**

- **World Bank Policy on Environmental Assessment (OP 4.01)**

The World Bank requires Environmental Assessment (EA) of projects proposed for Bank financing to help ensure that such projects are constructed and operated in an environmentally sustainable manner. The World Bank’s environmental assessment policy and recommended processing are described in Operational Policy (OP)/Bank Procedure (BP) 4.01: Environmental Assessment. This policy is
considered to be the umbrella policy for the Bank’s environmental safeguard policies.

- **World Bank Policy (OP 4.03) on Use of Performance Standards for Private Sector Activities**

 The aim of this policy is to facilitate Bank financing for private sector led economic development projects by applying environmental and social policy standards that are better suited to the private sector, while enhancing greater policy coherence and cooperation across the World Bank Group. The eight (8) IFC Performance Standards have been adopted by the Bank as the World Bank Performance Standards for Projects Supported by the Private Sector (“WB Performance Standards”) for application to Bank support for projects (or components thereof) that are designed, owned, constructed and/or operated by a Private Entity.

- **World Bank Group Environmental, Health and Safety (EHS) Guidelines**

 The World Bank Group EHS Guidelines are technical reference documents that include the World Bank Group expectations regarding industrial pollution management performance. The EHS Guidelines are designed to assist managers and decision makers with relevant industry background and technical information. This information supports actions aimed at avoiding, reducing, and controlling potential EHS impacts during the construction, operation, and decommissioning phase of a project.

 The EHS Guidelines serve as a technical reference source to support the implementation of the World Bank policies and procedures, particularly in those aspects related to pollution prevention and occupational and community health and safety.

 The World Bank Group EHS guidelines applicable to the proposed Project are:

 - World Bank Group Environmental, Health, and Safety General Guidelines (2007);

 The General EHS Guidelines provide guidance to users on common EHS issues potentially applicable to all industry sectors. The EHS Guideline for Electric Power Transmission and Distribution provides guidance applicable to the project facilities that will transmit power from the power generation station to the nearby distribution substation.
IFC Performance Standards on Environmental and Social Sustainability

The International Finance Corporation (IFC) Performance Standards on Environmental and Social Sustainability (2012) are a set of standards which the IFC requires its clients to apply while undertaking due diligence for corporate or project financing.

The Performance Standards, totalling eight (8) in number, provide a robust framework for assessing and managing the environmental and social risks and impacts associated with projects to be financed so that development opportunities are enhanced.

The eight (8) IFC Performance Standards and their applicability to the proposed Project are summarized in Table 1.2 below.

Table 1.2: Summary of IFC Performance Standards and their applicability to the proposed Project

<table>
<thead>
<tr>
<th>Performance Standard</th>
<th>Requirements</th>
<th>Rationale</th>
<th>EIA Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 1: Assessment and Management of Social and Environmental Risks and Impacts</td>
<td>The PS requires that the Project initiate regular assessment of the potential social and environmental risks and impacts and consistently tries to mitigate and manage these potential impacts on an ongoing basis.</td>
<td>The Project has environmental and social aspects⁴ which may pose potential E&S risks and/or impacts. These include for example, land clearing, civil work activities, equipment installation, and engagement of labour. Best practice suggests that all projects, as long as E&S aspects exist, should possess systems for assessing and managing the potential risks and impacts resulting from such E&S aspects. Therefore PS 1 is applicable.</td>
<td>Chapter 5 – Potential and Associated Impact</td>
</tr>
<tr>
<td>PS 2: Labor and Working Conditions</td>
<td>PS 2 requires the Project to conduct its activities in a manner consistent with the four core labour standards (child labor, forced labour, non-discrimination etc.)</td>
<td>The Project will involve engagement of workforce. Therefore, it is necessary for the PASL to maintain appropriate labour and working conditions for these workers. As such, PS 2 is applicable.</td>
<td>Chapter 3 – Project Description</td>
</tr>
<tr>
<td>PS 3: Resource Efficiency and Pollution Prevention</td>
<td>Key requirements of PS3 are for the Project to consider ambient conditions and apply</td>
<td>The Project activities will depend on resources and also generates some</td>
<td>Chapter 3 – Project Description</td>
</tr>
</tbody>
</table>

⁴ An environmental or social aspect is defined as an element of a project’s activities, operations, products, or services that can or does interact with the environment, people, surrounding communities and/or the larger society.
<table>
<thead>
<tr>
<th>Performance Standard</th>
<th>Requirements</th>
<th>Rationale</th>
<th>EIA Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 4: Community Health, Safety and Security</td>
<td>The Project is required to evaluate the risks and potential impacts to the health and safety of the Affected Communities during the Project life-cycle and require establishing preventive and controlling measures consistent with good international industry practice.</td>
<td>Although there are no communities within the Project site, the Project may have direct or indirect impacts on the communities in the wider study area of the proposed Project. Therefore PS 4 is applicable.</td>
<td>Chapter 4 – Description of the existing Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 5 – Impact Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 6 – Mitigation Measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 7 – EMP</td>
</tr>
<tr>
<td>PS 5: Land Acquisition and Involuntary Resettlement</td>
<td>The Project is required to develop a resettlement action plan so that physically or economically displaced individuals have their living conditions and livelihoods restored or improved.</td>
<td>The 120 hectares (ha) Land for the proposed Project was acquired from the Katsina State Government by PASL in return for equity stake in the Project ownership. The site was acquired in two tranches of 50 ha and 70 ha. The project does not require any economic or physical resettlement. There are no settlements or residential quarters within the site. In addition the power transmission line right of way has also be selected to avoid existing structures along the proposed path to the connection point at the Kankia substation in Kankia, Katsina State</td>
<td>Chapter 1 – Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 3 – Project Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 4 – Description of the existing Environment</td>
</tr>
<tr>
<td>Performance Standard</td>
<td>Requirements</td>
<td>Rationale</td>
<td>EIA Reference</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>PS 6: Biodiversity Conservation and Sustainable Management of Living Natural Resources</td>
<td>This PS requires that the project avoid or mitigate potential impacts to biodiversity arising from their operations as well as incorporate sustainable management of renewable natural resources.</td>
<td>Although there are no protected or conservation areas within the Project site, the site is characterized by shrubs. PS 6 is considered applicable.</td>
<td>Chapter 4 - Description of the Environment; Chapter 5 - Potential and Associated Impacts; Chapter 6 - Mitigation measures</td>
</tr>
<tr>
<td>PS 7: Indigenous Peoples</td>
<td>Where indigenous people may potentially be affected then an indigenous people plan is required that identifies risk, potential impacts, and management measures.</td>
<td>To identify, potential environmental and social risk and impacts on indigenous people within the project area of influence. Based on the field studies, no indigenous communities as described by IFC PS 7 were found within the proposed project area of biophysical influence.</td>
<td>Chapter 1 - Introduction; Chapter 4 - Description of the existing Environment</td>
</tr>
<tr>
<td>PS 8: Cultural Heritage</td>
<td>The PS requires the project comply with relevant national law on the protection of cultural heritage, including national law implementing the host country's obligations under the Convention Concerning the Protection of the World Cultural and Natural Heritage and other relevant international law.</td>
<td>To protect cultural heritage from the potential adverse impacts of the proposed project activities and to support the preservation and promote equitable sharing of the benefits from the use of cultural heritage. Based on the field studies. No culturally important sites of artefacts as described by IFC PS 8 were found within the proposed project area of biophysical influence.</td>
<td>Chapter 1 - Introduction; Chapter 4 - Description of the existing Environment</td>
</tr>
</tbody>
</table>

1.6.6.2 International Conventions
The Nigerian Government is an important player in the International support for the protection of the environment. As such, the country is a signatory to some International laws and conventions, which are targeted towards conservation and protection of the environment in order to ensure sustainable development.

Some International conventions and regulations that are applicable to the proposed Project include:
The African Convention on the Conservation of Nature and Natural Resources was adopted in Algiers, Algeria, on September 15, 1968 and entered into force on June 16, 1969. The Convention stipulates that the contracting States shall undertake to adopt the measures necessary to ensure conservation, utilization and development of soil, water, flora and fauna resources in accordance with scientific principles and with due regard to the best interests of the people.

The Convention Concerning the Protection of the World Cultural and Natural Heritage was adopted in Paris, France on October 17, 1972. The Convention sets aside areas of cultural and natural heritage for protection. It places obligations to each State Party to recognize that the duty of ensuring the identification, protection, conservation, presentation and transmission to future generations of the cultural and natural heritage situated on its territory, belongs primarily to that State.

The Convention on the Conservation of Migratory Species of Wild Animals This Convention also known as the Bonn Convention was adopted in 1979 and entered into force in 1983. It stipulates actions for the conservation and management of migratory species including habitat conservation.

The Vienna Convention for the Protection of the Ozone Layer The Vienna Convention was adopted in 1985 and entered into force on September 22, 1988. It places general obligations on countries to make appropriate measures to protect the environment against adverse effects resulting from human activities which tend to modify the ozone layer.

The Montreal Protocol on Substances that Deplete the Ozone Layer The Protocol was adopted on September 16, 1987 as an international treaty to eliminate ozone depleting chemicals production and consumption.

The Basel Convention on the Control of Trans-boundary Movement of Hazardous Wastes and their Disposal The Convention was adopted on March 22, 1989 and entered into force on May, 1989. It focuses attention on the hazards of the generation and disposal of hazardous wastes. The Convention defines the wastes to be regulated and controlled in order to protect human and environmental health against their adverse effects.

The United Nations Convention on Biological Diversity The convention was adopted in 1994. The objectives of the Convention include the conservation of biological diversity, the sustainable use of its components and the
fair and equitable sharing of benefits arising out of the utilization of genetic resources.

- **The United Nations Framework Convention on Climate Change**
The Convention on Climate Change was adopted in 1992 during the Rio Earth Summit in Rio De Janeiro, Brazil and entered into force in 1994 to limit Greenhouse Gas (GHG) emissions which cause global warming.

- **International Health Regulations (2005)**
The International Health Regulations (IHR) is an international legal instrument that is binding on 196 countries across the globe, including all the Member States of World Health Organisation (WHO). This binding instrument of international law entered into force on 15 June 2007. The purpose and scope is “to prevent, protect against, control and provide a public health response to the international spread of disease in ways that are commensurate with and restricted to public health risks and which avoid unnecessary interference with international traffic and trade”.

- **Declaration of the United Nations Conference on Human Environment**
The principles of this Declaration relevant to the Project are summarized below:

 Principle 2: The natural resources of the earth, including the air, water, land, flora and fauna especially representative samples of natural ecosystems, must be safeguarded for the benefit of present and future generations through careful planning or management, as appropriate.

 Principle 3: The capacity of the earth to produce vital renewable resources must be maintained and, wherever practicable, restored or improved.

 Principle 4: Nature conservation, including wildlife, must receive importance in planning for economic development.

 Principle 15: Planning must be applied to human settlements and urbanization with a view to avoiding adverse effects on the environment and obtaining maximum social, economic and environmental benefits for all.

 Principle 18: Science and technology, as part of their contribution to economic and social development, must be applied to the identification, avoidance and control of environmental risks and the solution of environmental problems and for the common good of mankind.

These guidelines call for coherent policies to protect workers from occupational hazards and risks while improving productivity. The guidelines present practical approaches and tools for assisting organizations, competent national institutions, employers, workers and other social partners in establishing, implementing and improving occupational safety and health management systems, with the aim of reducing work-related injuries, ill health, diseases, incidents and deaths.

At the organizational level, the guidelines encourage the integration of OSH management system elements as an important component of overall policy and management arrangements. Organizations, employers, owners, managerial staff, workers and their representatives are motivated in applying appropriate OSH management principles and methods to improve OSH performance. Nigeria ratified the guidelines in 2001.

International Labour Organisation (ILO) Conventions Treaties and Recommendations

The International Labour Organization (ILO) is the United Nations (UN) agency that deals with labour issues, particularly international labour standards and decent work conditions for all. The agency formulates standards which are legal instruments that set out the basic principles and rights at work. They include conventions treaties and recommendations.

ILO has created a total of 190 conventions. Of these, eight are fundamental Conventions which are binding on all member countries. The other Conventions are only binding on member countries that have ratified them. The enforcement of conventions is vested on the jurisprudence of domestic courts as ILO does not take up this responsibility.

Nigeria has ratified a total of 40 ILO convections. These include: all 8 Fundamental Conventions, 2 of the 4 Governance Conventions and 30 of the 177 Technical Conventions. The full list of ILO conventions ratified and not ratified by Nigeria is provided in Appendix 3.

1.7 PASL’s Health, Safety and Environment (HSE) Policy

PASL is committed to constructing and operating the Project in line with the local and international guidelines and standards on health and safety including the IFC requirements on Occupational Health and Safety as well as Community Health and Safety. This will be achieved through the following, amongst others:
 Identification and evaluation of all HSE hazards or aspects and the management of those risks to reduce their impacts to acceptable levels;
 Compliance with all applicable local and international applicable HSE legislations;
 Prevention of incidents, injuries, and pollution;
 Intolerance of the conditions and behaviour that contribute to incidents and injuries;
 Reduction of waste and conservation of resources; and
 Continual improvement of HSE performance.

1.8 EIA Report Structure

In line with the provisions of the FMEnv EIA Procedural Guidelines, the EIA report is structured as follows:

- Preliminary Sections: These include Table of Contents, List of Tables, Figures and Plates, and Executive Summary
- Chapter One: Introduction containing an overview of the Project, the EIA objectives and process and applicable legal framework.
- Chapter Two: Project Justification containing a rationale for the Project as well as the analysis of Project alternatives.
- Chapter Three: Project Description containing the technical elements of the Project.
- Chapter Four: Description of existing environmental conditions of the Project area.
- Chapter Five: This presents the potential and associated impact of the Project including impact assessment approach.
- Chapter Six: Mitigation measures for the identified significant impacts.
- Chapter Seven is the Environmental Management Plan for the Project.
- Chapter Eight: Decommissioning/Abandonment Plan presenting a decommissioning and remediation plan to be applied after the Project closure.
- Chapter Nine: presents the conclusions
- References
- Appendices
CHAPTER TWO:

PROJECT JUSTIFICATION
CHAPTER TWO

PROJECT JUSTIFICATION

This chapter presents the rationale for the proposed Project as well as the description of the Project alternatives.

2.1 Need for the Project

The erratic nature of power supply in Nigeria may not guarantee any meaningful industrial development and can also not lead the country to the realization of her vision of becoming one of the top 20 industrialized nations in the world by the year 2020, except progressive measures are taken. The current situation of the country’s electricity supply remains a high risk factor in the nation’s economic instability, since no commercial venture, manufacturing or international business could thrive well without stable power (electricity) supply.

In Nigeria, electricity generation and consumption is expected to grow due to the nation’s pursuit of industrialization and development. In the quest to meet the urgent demand for electricity in the country, many Independent Power Plants that rely mostly on diesel or natural gas-fired turbines or generating engines are currently being established. The combustion of these fuels (natural gas and diesel) generates air emissions including greenhouse gases (GHGs) which can be significant. Alternative to this environmental issue is the use of a cleaner energy (renewable energy) source.

A reliable and cost-effective power supply is a key driver for a profitable and sustainable business. Katsina State is rapidly becoming industrialized as more companies are being established in the state. There is a great need for regular electricity supply so as to improve individual Company’s operations and production which in turn will lead to an overall increase in the local economy.

The proposed Project is justified primarily on the basis of the need by the Nigerian Government to improve efficiency, reliability and sustainability of the electricity industry as well as generate electricity from clean energy in an environmentally sustainable manner.

2.2 Project Benefits

The potential benefits of the proposed Project include, amongst others:

- Use of renewable energy technology with minimal GHGs emissions.
- Stimulation of socio-economic activities thereby promoting industrial growth.
2.3 Value of the Project

The anticipated cost of the proposed Project is One Hundred and Seventy Million US Dollars ($ 170,000,000.00). A significant amount of this fund will be injected into the local and regional economy through various contracts and sub-contracts. In addition, the Project has local and national economic values in terms of employment opportunities for various categories of Nigerian professionals, skilled and semi-skilled craftsmen, and technicians.

2.4 Envisaged Sustainability

2.4.1 Technical Sustainability Measures

The Solar Power Plant design, construction and operations shall be handled by properly trained and experienced personnel according to the pre-established standard methods and procedures. The geo-technical survey of the Project site has been conducted and the findings of the survey will inform the type of foundation work that will be selected for the Project.

Technical sustainability will be assured through adherence to high standards for construction/installation and operation, including safety. The design and construction of the proposed Project will be overseen by JCM and OST Energy. JCM has a strong solar development track record, with experience developing over 70 ground mount and rooftop solar projects and more than 400 MWp in Africa, Latin America and North America.

In addition, PASL will develop operating manuals and appropriate documentation regarding the proper operation and maintenance of the project facilities. These materials will be used as the basis for providing facility-specific training to relevant personnel prior to start-up to further ensure technical sustainability of the project.

2.4.2 Environmental Sustainability Measures

- The use of renewable source of energy for electricity generation rather than non-renewable energy sources such as oil/diesel or coal.
All Project facilities shall be designed and constructed to keep environmental impacts at the minimum and acceptable levels.

- All operations shall be carried out to conform to all relevant international and national environmental regulations and standards.
- Handling, storage and disposal of wastes shall be in accordance with the regulatory requirements and the Company’s relevant Standard Operating Procedures (SOPs).

2.4.3 Economic and Commercial Sustainability
- The design, construction and installation of the Project shall be funded by PASL with financial support from potential lenders.
- There are market opportunities for electricity that will be generated. The proposed PV power plant is expected to improve electric power availability at affordable price to industrial and domestic users.
- Revenue that would accrue from power sales would serve for the payment of staff and the procurement of maintenance materials and services.
- The Project will provide employment, support the local communities and the national economy as a whole.

2.4.4 Social Sustainability
A detailed Stakeholder consultation process has been executed throughout the EIA process to assist in ensuring that all stakeholders have had the opportunity to provide input into the Project planning process. This has also assisted in laying a good foundation for building relationships with the stakeholders.

PASL shall ensure that the stakeholder consultation process is sustained throughout the entire life cycle of the Project. This will also include periodic reporting to the potentially affected communities on the environmental performance of the Project.

In addition, the social sustainability of the Project will be achieved through continuous implementation of a Corporate Social Responsibility (CSR) Plan (refer to Chapter 7) which will be developed to fit the need of the Project’s socio-economic environment.

2.5 Project Alternatives and Development Options

The analysis of alternatives and development options considered for the proposed Project is presented below:
2.5.1 Project Alternatives

2.5.1.1 Project Site Alternative

The preferred Project site for the PV Solar Plant is a plot of 120 ha of land located approximately 2.5 km from the town of Kankia in Katsina State, Northern Nigeria and lies approximately 3 km from the existing Kankia substation. The site is situated in a Government Reserved Area (GRA)\(^5\) along Kankia-Ingawa road, in Kankia Local Government Area (LGA). Although the site is currently not enclosed, there are no residential buildings and farmlands on it.

The total land area (120 ha) was acquired from the Katsina State Government in two tranches of 50 ha and 70 ha. The land valuation document is presented in Appendix 4 to this report.

Factors which make this site advantageous include the following:

- Proximity to existing infrastructure (Kankia substation): The site is located less than 4 km from the existing Kankia substation for power evacuation.
- Land use: The site would not require any physical or economic relocation or resettlement.
- Government-owned land: The project site was owned by the Katsina Government before rights were granted to PASL.
- Environmental condition: The portion of the site to be developed has no significant ecological constraints.

Alternatives to the current Project site will include siting the proposed Project within the urbanized area in Katsina town or areas that are extensively known for agricultural use. This option is not considered viable since it is evidently more environmentally and socially vulnerable. Locating the Project in an urbanized area may result into significant physical resettlement as a result of land take. There are also the difficulties of obtaining private land from individuals. Therefore, the best option for the project siting is the Kankia area in the Kankia LGA, Katsina State as selected by the State Commission.

2.5.1.2 Technology Alternative

Solar power is rapidly gaining popularity throughout the world as the technology keeps on improving and the issues associated with GHGs and global warming are diverting attention away from fossil fuel generated power. Solar energy facilities operate by converting solar energy into a useful form (i.e. electricity). The use of solar energy for electricity generation is a non-consumptive use of a natural resource and consumes no fuel for continuing operation. Solar power produces an insignificant quantity of GHGs over its lifecycle as compared to conventional

\(^5\) Government Reserved Areas (GRAs) are land areas owned by the Federal or State Government usually set aside for future development (for example, residential or industrial purpose). They are not technically synonymous to conservation or protected areas under IUCN categorization guidelines.
oil/coal-fired power stations. The operation phase of a solar facility does not produce carbon dioxide, sulfur dioxide, particulates, or any other type of air pollution, as do fossil fuel power generation technologies.

The solar technologies options considered for the proposed Project are:
- Concentrated Solar Power (CSP) Systems; and
- Photovoltaic (PV) Solar Panels

Concentrated Solar Power (CSP): CSP is a solar power generation system that relies on use of mirrors or lenses to concentrate a large area of sunlight or solar thermal energy onto a small surface. The concentrated radiation is then used as heat or heat source for a conventional power plant. CSP technology generates alternating current (AC) which can be easily distributed on the power network.

The three (3) main types of CSP systems are: linear concentrator, dish/engine, and power tower systems.

Linear concentrator systems collect the sun's energy using long rectangular, curved (U-shaped) mirrors. The mirrors are tilted toward the sun, focusing sunlight on tubes (or receivers) that run the length of the mirrors. The reflected sunlight heats a fluid flowing through the tubes. The hot fluid then is used to boil water in a boiler, the steam is then passed through a conventional steam-turbine generator to produce electricity. There are two major types of linear concentrator systems: parabolic trough systems, where receiver tubes are positioned along the focal line of each parabolic mirror; and linear Fresnel reflector systems, where one receiver tube is positioned above several mirrors to allow the mirrors greater mobility in tracking the sun.

A dish/engine system uses a mirrored dish similar to a very large satellite dish, although to minimize costs, the mirrored dish is usually composed of many smaller flat mirrors formed into a dish shape. The dish-shaped surface directs and concentrates sunlight onto a thermal receiver, which absorbs and collects the heat and transfers it to the engine generator. The most common type of heat engine used today in dish/engine systems is the Stirling engine. This system uses the fluid heated by the receiver to move pistons and create mechanical power. The mechanical power is then used to run a generator or alternator to produce electricity.

A power tower system uses a large field of flat, sun-tracking mirrors known as heliostats to focus and concentrate sunlight onto a receiver on the top of a tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid.
Photovoltaic (PV) Solar Panels: Photovoltaic (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of cells containing a photovoltaic material. Materials presently used for photovoltaic include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium selenide/sulfide.

Photovoltaic is the direct conversion of light into electricity at the atomic level. Some materials exhibit a property known as the photoelectric effect that causes them to absorb photons of light and release electrons. PV technology is made as system designed to capture electron released by an array semiconductors that exhibit photovoltaic effect on exposure to light. PV systems generate DC which is then converted to AC, usually with the use of inverters, in order to be distributed on the power network.

It is widely believed that two factors have contributed the most for the dominance of PV over CSP. These factors are:

- **Market size:** PV can be installed almost everywhere but CSP cannot. Current commercial CSP technology needs higher levels of irradiance, access to water (just like a coal plant) and large-scale deployments (typically more than 20 MW, compared with the few kW of a residential PV system).

- **Technological simplicity:** A PV system is like a quartz watch, whereas a CSP system is like a mechanical watch. The former revolves around the solar cell, while the latter is a combination of equally critical components.

Table 2.1 shows the comparison between CPS and PV Solar Technologies.

<table>
<thead>
<tr>
<th>Features</th>
<th>CSP Technology</th>
<th>PV Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>CSP technology uses concentrated radiation from the sun, to heat a liquid substance which is used to generate steam which in turn passes through a steam-turbine to generate electricity.</td>
<td>PV technology uses sunlight through the ‘photovoltaic effect’ to generate direct electric current (DC).</td>
</tr>
<tr>
<td></td>
<td>CSP Technology produces electricity through indirect means.</td>
<td>PV Technology produces electricity through direct means.</td>
</tr>
<tr>
<td></td>
<td>Energy output with CSP technology is of AC type.</td>
<td>Energy output with PV technology is of DC type but commonly converted to AC through an inverter.</td>
</tr>
<tr>
<td>Applications/Scale</td>
<td>CSP is used for utility scale power generation, mostly for Grid Connections, and also supporting</td>
<td>PV technology is suitable for off grid small and medium-sized</td>
</tr>
<tr>
<td>Features</td>
<td>CSP Technology</td>
<td>PV Technology</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>conventional thermal power and desalination plants.</td>
<td>applications, and for utility scale applications</td>
</tr>
<tr>
<td>Land requirement</td>
<td>CSP technology is best suited for areas of high direct normal solar radiation.</td>
<td>PV technology has a wider geographical area of application.</td>
</tr>
<tr>
<td></td>
<td>CSP technology requires about 5 to 10 acres of land per MW of capacity</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>CSP technology has an high installation and maintenance cost in comparison to PV</td>
<td>PV technology has a low installation and maintenance cost in comparison to CSP</td>
</tr>
<tr>
<td>Construction Time</td>
<td>CSP plant construction is technical more complex than PV</td>
<td>Utility scale PV plants are easier to install and require less time than CSP for Plant construction</td>
</tr>
<tr>
<td>Water Requirement</td>
<td>Water requirement is variable depending on the CSP technology option adopted.</td>
<td>Typically requires less water than CSP technology. Water is required for cleaning of dust from the panels.</td>
</tr>
<tr>
<td></td>
<td>Can be hybridized with fossil fuels like natural gas.</td>
<td></td>
</tr>
<tr>
<td>Design Options</td>
<td>Less flexible in comparison to PV technology</td>
<td>Highly flexible and adaptable to the project specific requirement</td>
</tr>
<tr>
<td></td>
<td>Can be hybridized with fossil fuels like natural gas.</td>
<td></td>
</tr>
<tr>
<td>Life Span</td>
<td>> 20 years</td>
<td>> 20 years</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Power production efficiency of CSP technology are as high as 45%</td>
<td>Power production fluctuates with the sunlight's intensity. For practical use this usually requires conversion to certain desired voltages or alternating current (AC), through the use of inverters.</td>
</tr>
<tr>
<td>Power storage</td>
<td>CSP systems are capable of storing energy by use of Thermal Energy Storage technologies (TES) for use at night or during low irradiation</td>
<td>Batteries are required to provide backup power storage</td>
</tr>
<tr>
<td>Environmental Risks</td>
<td>CSP systems have been recorded to pose environmental risks to bird species, which may be killed by the intense heat generated by the concentrated solar radiation which is reflected off the mirrors</td>
<td>PV systems are considered to be generally benign.</td>
</tr>
</tbody>
</table>

The preferred option for the proposed Project is PV technology (consisting of PV cell and PV module or panel) since it does not require liquid substance to operate which could lead to significant process wastewater generation. In addition, the PV technology is highly flexible and requires low installation and maintenance cost in comparison to CSP technology.

PV cells are commonly constructed from mono or poly crystalline (using Silicon) or thin film technology. All PV cells produce direct current (DC). The PV cells that are being considered for the Project are thin film solar cells technology or poly crystalline (due to environmental performance and cost benefits) with emphasis on thin film.
Thin-film solar cells technology consists of depositing one or several thin layers of photovoltaic semi-conductor material (such as cadmium telluride, amorphous silicon, and copper indium gallium selenide) onto a low cost substrate such as glass, stainless steel or plastics. This technology results in lower production costs compared to the more material intensive crystalline technology.

The comparison between Crystalline and Thin film technologies is provided in Table 2.2 below.

Table 2.2: Comparison between Crystalline and Thin film Technologies

<table>
<thead>
<tr>
<th>Features</th>
<th>Crystalline Technology</th>
<th>Thin Film Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Crystalline silicon (c-Si) PV systems are made from slices (wafers) of high purity silicon. Silicon wafers go through a number of processes to be made into cells; these are assembled into modules and electrically connected and encapsulated to form a module. (c-Si) technology includes two major variants: i) mono crystalline silicon (mono-c-Si) ii) multi-crystalline silicon (multi-c-Si) c-Si PV is the oldest and currently most dominant PV technology having up to 85% of the PV market share.</td>
<td>Thin films (TF) PV cells are made from the deposition of thin layers of semiconducting material onto inexpensive, large-size substrates such as glass, polymer or metal. TF technology includes three variants: i) amorphous (a-Si) and micromorph silicon (a-Si/μc-Si), ii) Cadmium-Telluride (CdTe), and iii) Copper-Indium-Diselenide (CIS) and Copper-Indium-Gallium-Diselenide (CIGS) Currently account for 10% to 15% of global PV market.</td>
</tr>
<tr>
<td>Cost</td>
<td>Approximately $0.6/Wp</td>
<td>Comparable to (c-Si)</td>
</tr>
<tr>
<td>Land requirement</td>
<td>Requires less land area than (TF) to produce equal amount of electricity due to the inherent higher efficiency of the technology.</td>
<td>Requires more land area to produce equal amount of electricity due to the its lower efficiency when compared with (c-Si)</td>
</tr>
<tr>
<td>Performance</td>
<td>(c-Si) PV suffer a slight loss in efficiency in high temperature operating conditions.</td>
<td>(TF) PV produces better performance at high ambient temperature, and reduced sensitivity to overheating.</td>
</tr>
<tr>
<td>Appearance and Design Options</td>
<td>(c-Si) PV modules have 60 or 72 distinct, dark-colored cells that are predominantly rectangular in shape and an aluminium frame;</td>
<td>(TF) PV improved appearance, are usually frameless and flexible and can easily adapt to different surfaces building integration</td>
</tr>
<tr>
<td>Life span</td>
<td>(c-Si) PV has a proven life span of over 25 years. Backed up by manufacturers’ warranties; 10 years workmanship, 25 years 80% maximum power output.</td>
<td>Limited experience with lifetime performances. Similar manufacturers’ warranties to (c-Si).</td>
</tr>
<tr>
<td>Efficiency</td>
<td>(c-Si) PV modules, however, have efficiencies in the range of 13-19% with more than a 25-year lifetime.</td>
<td>(TF) PV modules offer lower efficiency (6-12) % when compared to (c-Si) PV technology.</td>
</tr>
</tbody>
</table>
2.5.1.3 Transmission Route Alternatives

PASL considered various transmission routes for the evacuation of power (electricity) planned to be generated from the proposed Project. A number of these routes seem not to be the preferred options due to the presence of existing communities along the right of way. Using these routes will result in community resettlement with attendant social and economic implications. Thus, a route that will not involve the resettlement of people (with minimal social impact) was chosen as the preferred route for the proposed Project (Figure 2.1).

A detailed transmission line route survey was undertaken by Pengate Global Services Limited, a registered survey and geo-informatics consultant based in Abuja, Nigeria. With guidance from the Kaduna State Government, a detailed route survey was performed from the proposed Project site to the suggested connection point at Kankia substation. The total length of the detailed route survey is 3.66 km and the route avoids settlements and other sensitive receptors such as schools and markets. The detailed route survey followed the existing 132 kV single circuit transmission line from Kano to Katsina.

The transmission corridor will ultimately be owned by Transmission Company of Nigeria (TCN). The proposed line route and ultimately the corridor/right of way (ROW) for transmission pylons are currently passing through vacant private land owned by some individuals in Gachi community. The list of the landowners has been compiled and the Katsina State Government is working with PASL and the landowners to obtain the necessary rights to pass through the relevant land properties with overhead lines. A detailed Land Acquisition Plan for the transmission right of way will be developed. No settlements are envisaged to be relocated along the proposed route.
2.5.1.4 Alternative Energy Source

The analysis of alternative energy sources considered for the proposed Project with reference to the Nigeria situation is provided in the following paragraphs:

Coal Powered Generating Power Plant

With regard to coal-fired generating power, there are few reliable projections of the potential capacity that could be (economically) extracted from this fuel source. Having reached a peak of just 730,183 tons per annum in 1965, the country’s coal production declined. By the early 1990s, coal production had declined to less than 100,000 tons per annum. In 2001, coal-fired power contributed about 0.02% to the commercial energy consumption in Nigeria (Sambo, 2008). In 2005, the proven coal reserves were estimated at about 639 million tons while the inferred reserves are about 2.75 billion tons. For several years, the Federal Bureau of Public Enterprises has been trying to privatize some of the coal mines owned by the Nigerian Coal Corporation; but it appears to have met with little success (Azura EIA 2013). This has thus resulted in limited production and utilization of coal in Nigeria.

The option of using coal as source of energy for the proposed Project is considered not feasible because of the following:
- There is generation of waste bottom and fly ash which would require a large area for storage on site.
- Considering environmental implications; a coal fired power plant is significantly known for emitting air pollutants especially Sulphur (IV) Oxide and Carbon monoxide.

This alternative is therefore not preferred as viable energy source for the proposed Project.

- **Oil Powered Energy Plant**

 In 2005, Nigeria's crude oil reserves stood at 36.5 billion barrels with projected proven reserves to reach 68 billion barrels by year 2030 (Sambo, 2008). The substantial growth in oil reserves over the years was as a result of improved funding of Joint Venture operations, the emergence of new production sharing arrangements and the opening up of offshore blocks. Nigeria's rate of oil production averaged 2.4 million barrels per day (mb/d) in 2005 with the daily production expected to increase to over 5.0 million per day by 2030. The expected life-span of Nigerian crude oil is about 44 years, based on a production rate of 2mb/d (Sambo, 2008). A high potential production rate can only be achieved with the adoption of high exploration strategic development policies and programs.

 In 2008, domestic utilization of oil averaged at 450,000 barrels per day (Sambo, 2008). The capacity of the petrochemical and fertilizer plants established by the Federal Government has dropped significantly due to poor maintenance and operating conditions. Consequently, the annual domestic demand for petroleum products is not fully met by internal production and is supplemented by imports (Sambo, 2008) which would also impact the power output because of some unforeseen delay in getting the imported products.

 The oil-fired power scenario is considered to be less financially and environmentally feasible to realize the aims of the proposed Project due to the need for a steady supply of oil resources and because air emissions from the oil-fired station are significantly higher than the gas-fired station as they are regarded as the highest emitters of GHGs.

- **Natural Gas-fired Power Plant**

 Approximately 75% of the gas produced from oil exploration and production activities has been flared historically. Gas flaring was reduced by 36% due to government flaring policies (Sambo, 2008). Nigeria's proven natural gas reserves, estimated at about 187.44 trillion standard cubic feet (tscf) in 2005, are considered to be significantly larger than its oil reserves in energy terms.
Natural gas is used primarily for power generation which accounted for over 80% of its use in 2005. The expected life-span of natural gas reserves is about 88 years, based on the 2005 production rate of 5.84 billion standard cubic feet per day (bscf/d) (Sambo, 2008).

Although, natural-gas powered plants generate lesser air emissions when compared with oil-powered plant, they also contribute to GHGs emissions. The natural gas-fired power plants could also lead to significant wastewater generation. This alternative is therefore not considered viable to the realization of the economic and environmental goal of the proposed Project.

❖ Wind Energy Plant
A wind power plant operates by wind energy turning a rotary blade, which powers a turbine to generate electricity. According to Nigeria's Renewable Energy Masterplan (REM) (2006) identifies short, medium and long-term targets for renewable energy contribution to power generation. The target for wind power is 1 MW, 20 MW and 40 MW for the short, medium and long-term respectively. Based on these targets, wind power is not considered to be an energy source alternative that could realize the envisaged generation capacity of the proposed Project. Also, the potential for wind energy generation is highly dependent on long term wind monitoring to be undertaken prior to planning the project.

❖ Wave Generation Power Plant
There is an investigation on the potential for wave generation. The wave power technology is however in its infancy globally and may require a number of years before this technology is suitable for deployment. This alternative energy source is therefore considered not feasible for the proposed Project.

❖ Solar Energy
Solar energy systems produce energy by converting solar irradiation into electricity or heat. Photovoltaic (PV) facilities use PV panels comprising many individual PV cells which absorb solar energy.

Katsina State is regarded as one of the places in Nigeria with high intensity of sunlight. The Katsina State Government has great interest in generation of power through sunlight (solar). The report of long term solar resources assessment of the project area in Katsina State is provided in Appendix 5. Solar energy is an important source of renewable energy. The first and foremost advantage of solar energy is that, beyond panel production, it does not emit any GHGs. Solar power generation is currently one of the fastest growing areas in renewable energy. Solar photovoltaic (PV) technology is well proven and solar panel manufacturers now provide 20 to 25 year production warranties with the panels themselves typically lasting up to 35 years.
Compared to alternative renewable generation technologies such as wind turbines or biofuel generators, solar energy is produced by conducting the sun’s radiation – a process void of any smoke, gas, or other chemical by-product. This is the main driving force behind all green energy technology, as nations attempt to meet climate change obligations in curbing emissions. The market opportunity for this technology in Nigeria is also attracting investors.

Solar energy source is considered to meet the objectives of this Project which also informed the location of the Project in Katsina State, the Northwest region of the country.

In summary, coal-fired power, oil and natural gas technology are technically feasible but they are associated with high emission levels that could significantly contribute to global warming effect due to the emission of GHGs compared to the use of sources of renewable energy. Sunlight is considered as the preferred energy source for the proposed Project as a result of its minimal environmental impact especially during operations.

2.5.2 Development Options

2.5.2.1 No Project Option
The no project option implies that the proposed Project will not be executed. This option though is environmentally favourable, but economically unviable, as no economic returns shall accrue to Nigeria Government and the proponent, yet substantial amount of money had already been spent on the feasibility, planning and logistics for the Project.

Choosing the no project option will mean a loss of preliminary investments made by the proponent on the Project. It will also mean that potential benefits to the Federal Government, Katsina State Government and the associated potential employment opportunities will be lost.

In addition, such a decision will not be in accordance with the Federal Government’s initiatives to boost energy supply in Nigeria and achieve its target of generating adequate electricity to enhance economic and social status of its citizenry. These and other related issues make it impossible to adopt the no project option.

2.5.2.2 Delayed Project Option
This option implies that the planned Project will be delayed until a much later date. Such option is usually taken when conditions are unfavourable to project implementation such as in war situation, or where the host communities are deeply resentful of the Project. Also, if the prevailing economic climate is not quite
favourable to the Project, then delayed project option may be feasible. But none of these conditions is applicable.

Indeed, both the economic and the political environments are most favourably disposed towards the Project. The implication of delayed project option will mean that all the preliminary work and associated efforts/costs incurred would have come to nothing. Also, because of inflationary trends, such a delay may result in unanticipated increase in project costs, which may affect the final profit accruable from the Project. The delayed option is considered unviable for the Project.

2.5.2.3 With the Project Option (Go ahead option)
The inherent benefits of allowing the Project to go ahead as planned (using Solar PV technology) are multifarious both to the proponent and the Nigeria populace. Job opportunities for Nigerian professionals, skilled and semi-skilled craftsmen will increase. The proposed Project will generate additional 80 MWp to the national grid via a renewable energy source with minimal environmental footprint especially during operations.

Thus, given the above mentioned considerations, the preferred option - construction of the proposed Project with efficient technology, cost minimization and environmental friendliness - is considered the optimal one. The option to go ahead as planned does outweigh the other options of no project and delay as clearly highlighted above.
CHAPTER THREE:

PROJECT DESCRIPTION
CHAPTER THREE

PROJECT DESCRIPTION

3.1 Introduction

This chapter presents a description of the proposed Photovoltaic (PV) Solar Power Plant Project, in terms of the following:

- Project overview
- Site description
- PV technology
- Solar project components
- Project development phases
- Water consumption
- Workforce and job opportunities
- Health and safety
- Site security
- Associated waste streams
- Project schedule

3.2 Project Overview

PASL proposes to construct, install and operate a PV Power Plant in Kankia, Kankia Local Government Area (LGA) of Katsina State. The proposed total capacity of the Project is 80 MWp. The Project will be a ground mounted solar PV module using crystalline silicon, or thin film PV technology on a fixed tilt mounting structure.

The Project is planned to be built in 2 phases. Phase 1 will have a capacity of approximately 34 MWp and Phase 2 is approximately 46 MWp. Construction of Phase 1 is planned to commence in Quarter 1 (Q1) 2016 and be in full operations in Q3 2016. Phase 2 is anticipated to be operational a year later (2017).

Electricity generated from the Project will be evacuated via high voltage power (transmission) lines to the nearby existing Kankia substation (situated approximately 3.66 km from the Project site) for transmission and distribution via the national network. PASL is in the process of signing a contract agreement with the Nigerian Bulk Electricity Trading (NBET). NBET is a Federal Government of Nigeria owned public liability company involves in the purchase and resale of electrical power and ancillary services from independent power producers.

Table 3.1 provides an overview of the Project.
Table 3.1: Project Overview

<table>
<thead>
<tr>
<th>S/N</th>
<th>Item</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Project Name</td>
<td>PASL Katsina PV Plant</td>
</tr>
<tr>
<td>2.</td>
<td>Plant Location</td>
<td>Kankia, Katsina State</td>
</tr>
<tr>
<td>3.</td>
<td>Size of the Project Site</td>
<td>Approx. 120 hectares</td>
</tr>
<tr>
<td>4.</td>
<td>Plant capacity (MWp)</td>
<td>80</td>
</tr>
<tr>
<td>5.</td>
<td>Grid operator</td>
<td>Transmission Company of Nigeria</td>
</tr>
<tr>
<td>6.</td>
<td>Envisaged commencement date</td>
<td>Q1 2016</td>
</tr>
<tr>
<td>7.</td>
<td>Proposed Engineering, Procurement and</td>
<td>To be confirmed. Bidding process is on-</td>
</tr>
<tr>
<td></td>
<td>Construction (EPC) contractor</td>
<td>going.</td>
</tr>
<tr>
<td>8.</td>
<td>Project Life Span (average)</td>
<td>25 years</td>
</tr>
</tbody>
</table>

3.2.1 Site Description

The Project will be located on a plot of 120 ha land situated approximately 2.5km from Kankia town in Katsina State. Katsina State is bordered to the south by Kaduna State, to the east by Jigawa and Kano States, and to the west by Zamfara State.

The Project site has a rectangular shape and lies between Latitude $12^\circ33'40''$ N and $12^\circ34'30''$ N and Longitude $7^\circ48'30''$ E and $7^\circ49'20''$ E. It is situated in a Government Reserved Area (GRA) along Katsina-Kano Road, in Kankia LGA. The Kankia LGA is one of 34 LGAs in Katsina State, and is bordered to the Matazu and Musawa LGAs to the south, the Dutsin-Ma and Charanchi LGAs to the west, Kusada LGA to the east and Bindawa LGA to the north.

In addition to Kankia community, there are four (4) additional communities within a 5 km radius of the Project site (Figure 3.1) namely; Gachi, Kafin Dangi, Kauyan Maina, and Galadima. The distance and orientation of these communities to the Project site is as follows:

- Kafin Dangi (3.74 km north east),
- Kauyan Maina (2.98 km east),
- Galadima (1 km south west),
- Gachi (2.32 km south east), and
- Kankia (2.46 km south).

The Project site is characterized by shrubs, grasses and herbs. No farmlands or wetlands (spawning sites) are present within the Project site. The near-surface ground of the Project site is formed of compacted fine-grained sediments, such as clays and silts (Figure 3.2). The cross-sections of the Project site are shown in Plates 3.1 and 3.2. Currently the site is not enclosed/fenced. Site fencing will form part of construction activities.
Figure 3.1: Identified communities within 5 km radius of the Project Site
Figure 3.2: Project site features map
Plate 3.1: A cross-section of the proposed Project site

Plate 3.2: An existing untarred road that traverses the Project site
3.3 PV Module Technology

Solar energy systems produce energy by converting solar irradiation into electricity or heat. The proposed Project will utilize photovoltaic (PV) technology to generate electricity.

PV technology consists of the following basic components:

- **PV Cell**: It is a basic photovoltaic device, which generates electricity when exposed to solar radiation due to the photo-electric effect. The absorbed solar energy excites electrons inside the cells into a higher state of energy, producing electrical energy. PV cells are commonly constructed from mono or polycrystalline silicon or thin film technology. Each of these is discussed in detail in the sub-sections below. All photovoltaic cells produce direct current (DC).

- **PV module or panel**: This is the smallest common assembly of interconnected PV cells sold commercially. In the case of crystalline silicon cells, following testing and sorting to match the current and voltage, the cells are interconnected in series and encapsulated between a transparent, anti-reflective front, and a backing material to provide environmental protection to the cells. The module is then typically mounted in an aluminium frame to provide mechanical strength to the assembly.

3.3.1 Mono-crystalline Silicon

Mono-crystalline silicon (mono-Si) PV cells are made out of cylindrical silicon ingots. These are cylindrical in shape due to the ‘Czochralski Process’. This is a method of crystal growth, which involves melting silicon in a crucible before a rod-mounted seed crystal is dipped into the molten silicon. This is then slowly withdrawn, whilst being rotated, forming a large single-crystal cylindrical ingot, up to 2 m in length.

In order to optimize performance and lower the cost of a single mono-crystalline cell, four sides are cut out of the cylindrical ingot, which is then sliced into wafers. This gives mono-crystalline solar panels their characteristic appearance (Figure 3.3).
Mono-crystalline PV panels tend to have higher efficiency ratings than polycrystalline PV panels. However, as the wafer edges require cutting they have approximately the same level of operating power density as polycrystalline PV modules (discussed below). They are considered to operate slightly better than polycrystalline solar PV modules in warmer temperatures, but are also slightly more expensive to produce.

3.3.2 Poly-Crystalline Silicon

Panels based on polycrystalline silicon, also known as poly-silicon (poly-Si) or multi-crystalline, have been in the market since 1981, in which time the technology has been developed and improved. Raw silicon is melted and poured into square moulds, which are cooled and then cut into square wafers. This process is simpler and cheaper compared to mono-Si PV cell production. Although the poly-Si has a slightly lower efficiency, the modules generally have similar operating power density as mono-Si modules since the wafers are truly square and can be packed together in a module with less wasted space.

Poly-Si modules are recognizable due to their light or dark-blue colouring, which may vary across the module (Figure 3.4). However, non-reflective coating means that less light is reflected and the panels themselves appear less varied in appearance. The front glass of each PV module will be low-iron glass that will have anti-reflective coating, while the back cover will be tedlar; each panel is placed in anodized aluminium alloy frame.
Poly-Si cells tend to be slightly more sensitive to higher temperatures than mono-Si. However, their lower pricing in comparison to mono-Si modules and higher efficiency in comparison to thin-film technology makes them by far the most commonly used solar module technology in the market today.

![Typical Appearance of Polycrystalline Silicon PV Arrays](image)

Figure 3.4: Typical Appearance of Polycrystalline Silicon PV Arrays
Source: OST Energy 2015

3.3.3 Thin Film

Thin-film solar cell (TFSC) technology consists of depositing one or several thin layers of a photovoltaic semiconductor material onto a substrate. TFSCs can be categorized based on the photovoltaic material used in its production, as follows:

- Cadmium telluride (CdTe)
- Amorphous silicon (a-Si)
- Copper indium gallium selenide (CIS/CIGS)
- Organic photovoltaic cells (OPC).

Of these types, the most commonly used TFSC material is CdTe with over 10 GW of CdTe installed to date. CdTe modules utilise a thin layer of semi-conductor in thin-film fixed between front and back glass layers (Figure 3.5).

Cadmium and Tellurium are both rare-earth materials of limited abundance. The CdTe layer is typically 1-3 microns thick and fixed between layers of thick glass, with no vapour or other hazardous products being produced by the solar PV module during its lifecycle. It should be noted that the principal manufacturer of
TFSC CdTe panels take back panels for recycling at the end of their life span or if damaged.

Figure 3.5: Typical appearance of Thin-Film CdTe Arrays
Source: OST Energy (First Solar) 2015

Due to differences in physical properties, CdTe TFSCs perform slightly better than crystalline silicon PV technologies when subjected to higher temperatures and shading impacts. However, CdTe and most other commercially available TFSC modules have a lower efficiency than poly-Si and mono-Si modules currently on the market. This lower efficiency means that the costs of associated equipment and infrastructure will also increase (e.g., support structures, cables, etc.). Also, the TFSCs tend to degrade more quickly than mono and polycrystalline modules. TFSC modules use a continuous layer of PV material which results in a more homogenous appearance than mono-Si and poly-Si modules.

3.4 Solar Project Components

As earlier stated, PV panels convert sunlight to direct current (DC) power. The panels are connected together to form arrays, which in turn are connected to inverters to convert the DC power to alternating current (AC) power. The voltage of the power is stepped up by a transformer to the required voltage of the nearby electricity grid. The electricity is then fed from the site to the closest grid substation for distribution into the wider electricity grid. Figure 3.6 provides a general technical overview for a solar project and its key components.
Figure 3.6: Solar Farm Technical Overview
Source: OST Energy 2015
The key components associated with a PV power plant are as follows:

- PV modules
- Mounting structures (and tracking motors where applicable)
- Cabling
- DC-AC current inverters
- Transformers
- Medium Voltage (MV) & High Voltage (HV) Switchgear
- Electrical connection cabin
- Supervisory Control and Data Acquisition (SCADA) System
- Transmission to grid
- Associated infrastructure and utilities, including:
 - Site security, including fencing and CCTV
 - Buildings, including onsite substation, connection building, control building, guard cabin, and spare parts storage.
 - Access road and internal road network
 - Stormwater infrastructure and drainage system
 - Water supply infrastructure

It is anticipated that the proposed Project will have a generation capacity of 80 MWp, exporting around 150 MWh of electricity into the national grid per year.

It is typical for a single Engineering, Procurement and Construction (EPC) Contractor to undertake the majority of the design, construction and management responsibilities for projects of this type. The detailed technical design of the Project will be finalised once the EPC contract has been awarded.

OST Energy, an organization that is currently providing technical support to JCM Capital on the proposed Project, has undertaken initial layout designs for both poly-Si and TFSC modules, to provide an indication of the land area, coverage and generation capacity of each of these technologies. The layout designs are presented below in Figures 3.7 and 3.8.
Figure 3.7: Proposed Polycrystalline PV Layout
Source: OST Energy (First Solar) 2015
Figure 3.8: Proposed Thin Film PV Layout Source: OST Energy (First Solar) 2015
3.4.1 **PV Modules, Tables and Mounting Structure**

The PV modules being considered for the proposed Project are either polycrystalline silicon or thin film. It is however very likely that thin-film PV module will be used due to its inherent advantages over the polycrystalline silicon module. This will be clarified after further study on the comparative yield of the technologies is carried out. The PV modules will be on a fixed mounting structure.

For this purpose of this study, the description presented herein covers the thin film and the polycrystalline PV modules.

The PV panels typically have the following dimensions:

- **Polycrystalline**: 2 m x 1 m by 50 mm thick, with each panel producing a maximum output of around 300 Wp.
- **Thin Film**: 1.2 m x 0.6 m by 6.8 mm thick; with each panel producing a maximum output of around 100 Wp.

The PV panels are connected and arranged into a series of ‘tables’. Typical tables for poly-Si and TFSC would be as follows:

- **Poly-Si**: 4 modules high (in landscape) by 19 wide, giving 76 modules per table.
- **TFSC**: 8 modules high (in landscape) by 10 wide, giving 80 modules per table.

The tables supporting structures will be piled to a typical depth of around 1.5 – 2 m into the ground. Figures 3.9 and 3.10 show the row spacing for polycrystalline and thin film modules respectively.

The total area to be developed for the solar project will cover 120 ha. The panels will be arranged in rows extending across the site facing due south. The collective term for a series of PV panels in rows is sometimes referred to as PV array.
Figure 3.9: Row Spacing for Polycrystalline PV (in mm)

Figure 3.10: Row Spacing for Thin Film PV (in mm)
3.4.2 **Cabling and Combiner boxes**
The PV arrays will be connected via cables that run either under the PV arrays or underground (at a depth of approximately 1m) to combiner boxes. Combiner boxes combine the power generated by multiple arrays to larger cabling in order to transmit the power more efficiently to the Medium Voltage Power Units. The inverter/transformer enclosures convert the direct current (DC) produced by the PV panels to alternating current (AC).

3.4.3 **Medium Voltage (MV) Power Units**
The Project will comprise a series of Medium Voltage (MV) Power units. Each MV power unit will have dimension of 6 m x 2.6 m by 2.4 m high and consist of the following components:
- 2 x inverters
- 1 x 400 V/33 kV transformer
- 1 x switchgear

An indicative diagram of an MV unit is shown in Figure 3.11 below.

![Figure 3.11: MV Power Unit](image)
Source: SMA MV Power Station

The poly-Si design has been based on 3,610 modules (47.5 tables) per inverter, and the thin-film design on 10,800 modules (135 tables) per inverter. Therefore, there will be a total of one MV Power Unit for around every 2.2 MWp of modules.
this equates to a total of 38 MV Power Units for both poly-Si and thin film design options. The function of each component of the MV Power Unit is described below.

3.4.3.1 **Inverters**
An inverter converts the variable direct current (DC) output of a photovoltaic solar module into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. Inverters are a core component in a PV system, allowing the use of ordinary AC-powered equipment. Solar inverters have special functions adapted for use with PV arrays, including maximum power point tracking, string current monitoring and anti-islanding protection.

3.4.3.2 **Transformers**
A transformer is an electrical device that transfers electrical energy from one alternating circuit to another with a change in voltage, current, phase and/or impedance, allowing electricity to be distributed more efficiently over long distances. Each MV Power Unit will contain a 400 V/33kV step-up transformer.

3.4.3.3 **Switchgear**
The MV Power Unit switchgear operates, isolates and controls the export power from each 2.2 MWp ‘array’ before feeding into a ring main within the site.

3.4.4 **Connection Cabin**
The customer cabin will contain the following equipment:

- Project switchgear: to isolate and control the solar project as a whole.
- Generation Meter: to measure the amount of electricity generated by the Project.
- Project Power Transformer: this steps up the voltage from 33 kV to the required utility grid voltage of 132 kV. The power transformer will be bespoke constructed and site specific to local grid code requirements.
- Auxiliary Transformer: this supplies power to internal facilities within the project and steps down the electricity from MV to low voltage (i.e. 33kV/400 V).
- Project Control Room: this is where the SCADA operating system will be located and where an operator would control the project.

3.4.5 **Point of Connection Facility**
This facility is where the ownership is transferred from the Project owner to the Transmission Company of Nigeria (TCN) and from where the Project will connect to the national transmission network. The facility will contain the Project’s Export Meter and the TCN switchgear, which can isolate the Project in order to protect the national transmission network.
3.4.6 Transmission Line and Substation

The generated power from the Project will be evacuated through a dedicated 132 kV overhead transmission line that will connect the solar plant to the Kankia substation located approximately 4 km southeast of the Project site.

3.4.6.1 Transmission Line

PASL plans to construct a dedicated project transmission line connecting the Project to the Kankia substation (refer to Figure 2.1 in Chapter 2). The transmission line will extend approximately 1.1 km from the Project site to the existing 132 kV power line corridor, and follow this route to the Kankia substation for approximately 4 km. The single line diagram for the power evacuation is provided in Appendix 6.

Transmission lines are used to transmit power, generally using high-voltage three-phase alternating current (AC), over relatively long distances. The lines will be made of high voltage cabling of either copper or aluminium. The transmission of bulk electrical energy is done at high voltages to reduce energy losses in long-distance transmission. It is intended that the proposed transmission line will be a 132 kV double-circuit construction. The transmission lines generally comprise the following components:

- **Support structures:** pylons/poles are used to keep the high voltage conductors separate from each other, and far from the ground and other obstructions. The distance between structures (span) and their height is largely determined by the topography and clearance requirements. Spans may range from 200 to 400 metres. Poles are fabricated in a range of heights but are between 25 and 34 metres, to allow optimum height of a structure to be provided at each site.

- **Conductors/transmission cables:** these conduct/transfer the generated electricity.

- **Optical fibre ground wires,** to provide protection from direct lightning strikes.

- **Insulators and fittings,** provide electrical insulation between the conductors and the (earthed) structure.

The majority of transmission infrastructure for the Project is proposed to follow the existing 132 kV transmission corridor, away from settlements, schools, hospitals and other sensitive receptors as much as possible. The strip of land used by TCN to operate, maintain and repair the transmission line facilities is known as the transmission corridor right-of-way (RoW). The width of a right-of-way usually depends on the voltage of the line and the height of the structures. For a 132 kV power line associated with the proposed Project, a 30 m clearance right of way will be established, i.e. 15 m from the centre on either side of the pylon.
3.4.6.2 Transmission Substation

A transmission substation forms an integral part of an electrical generation, transmission, and distribution system, as it serves as the point where high voltage electricity is stepped down into lower voltage electricity suitable for distribution into commercial and residential areas through distribution lines.

For the purpose of this Project, the existing Kankia substation will serve the purpose of efficiently distributing the electricity generated at the PASL Solar Plant. Thus, no new substation is planned to be constructed as part of the proposed Project infrastructure/utilities. Plate 3.3 is a photograph of the existing Kankia substation.

Plate 3.3: A cross-section of existing Kankia Substation

3.4.7 Other Components

The following additional infrastructure and electrical equipment will be required for the Project:

- PV power facility monitoring equipment and associated telecommunication links;
- Meteorological stations to record irradiation and site conditions;
- Buildings are required for the daily operation of the Project, including:
- administration /office /control room & security (gate house),
- control room & workshop,
- ablution / change room and
- warehouse / storeroom.
 o Site security system, including CCTV, fencing around the site, lighting and 2 security booths near the access points;
 o Site access and internal road network to provide easy access to the arrays for operation and maintenance purposes;
 o Water supply infrastructure, including groundwater well(s), pipework and storage tanks;
 o Stormwater/drainage system to control the movement of water across the site and prevent damage to equipment.

3.5 Overview of Project Phases and Activities

The general development phases for such a large scale solar PV project can be categorised as follows:
 o Pre-construction: such as mobilisation of equipment and materials to site and site preparation.
 o Construction and Installation: including civil works, electrical works, and equipment installation.
 o Operation: Plant operation and routine maintenance.
 o Decommissioning: Dismantling of equipment and associated facilities and site restoration.

3.5.1 Mobilisation Phase

The mobilisation phase must take place before installation work can begin at the Project site and the time it takes is largely dependent on the country (regulations) in which the development takes place. This phase may include ordering of materials and equipment, signing contracts with subcontractors and hiring of staff.

This phase involves the mobilization of men, materials and equipment to site. Heavy-duty and other pieces of equipment will be moved to the proposed Project site at the beginning of construction activities for civil work activities and equipment installation. All PV, electrical and structural equipment is planned to be shipped through Lagos port and then trucked to site via road in steel “containers”. It is envisaged that about 500 truckloads transporting 300-400 x 40-foot containers would be required for construction phase. During the site preparation period, the workforce required for site security, manual labour, civil works, transportation of goods and other similar services will largely be drawn from the local labour pool.
Also included at this phase is the site preparation which involves clearing of vegetation and establishment of on-site facilities, including worker accommodation.

It is anticipated that this phase will take around 2 months.

3.5.2 Construction Phase
The construction phase of the Project will include activities such as:
- Construction/improvement of internal access roads
- Levelling of the ground
- Fencing around the Project site
- Construction of a groundwater system (boreholes)
- Installation of MV Power Units
- Driven piles for mounting structure
- Construction of electrical substation and foundations
- Excavation, trenching and cable laying
- Fixing and wiring of the panels
- Installing CCTV around the fence line and access points
- Installing water tank for staff, and operation and maintenance activities
- Installation of septic tank
- Construction of buildings
- Erection of overhead HV power lines along the transmission route
- Testing and commissioning of equipment and the Project as a whole
- Site clean-up.

During the construction phase, the piles will be driven into the ground to form the structural base of the PV arrays. Once the PV components have arrived on site, technicians will supervise the assembly of the panels and test the facility. The PV panels will be installed on the galvanized steel structures. A phased approach will be adopted.

During the first phase of construction, a highly-skilled team of solar energy technicians will train a number of potential local employees, preferably from Katsina State, where possible. Over this period it is estimated that 200 people will be involved in this phase. A section of the site will be used as a laydown area where shelters, equipment, ablution facilities (portable) and containers will be located.

Accommodation may need to be provided through temporary construction camps onsite for non-locals. However, the Project aims to employ a minimum of 30% (up to 60%) of unskilled and skilled labour from the surrounding communities for construction. About 150 - 180 local skilled, semi-skilled and unskilled workers would be engaged.
To provide access to the site from the nearby highway, a short road will need to be prepared to level that will be acceptable for the transport of equipment, material and people to and from the site. It is estimated that around 5 digger/loaders/bulldozers will be required for land clearing and 5 to 10 trucks with cranes will be required for the construction. Approximately 300-400 x 40-foot container loads would be required to construct the PV solar facility.

The construction activities usually require careful approach and appropriate safety procedures, including:

- Risk assessment
- Personal safety
- Site safety and security
- Ground excavation
- Final clean up.

It is anticipated that the construction activities phase will take up to around 8 months for each phase of the Project.

3.5.3 Operation Phase

Once the facility is complete and operational, it is expected that it will have a lifespan of approximately 25 years. Measuring the performance of the PV power plant will be done remotely, through the use of telemetric monitoring.

Day to day facility operations will involve both regular onsite preventive and corrective maintenance tasks in order to keep the PV power plant in optimal working order throughout the operational period. The preventive maintenance follows a routine service schedule aimed at preventing faults from occurring and keeping the plant operating at its optimum level. The frequency of the preventive maintenance depends on a number of factors such as the technology selected, environmental conditions of the site, warranty terms and seasonal variances. It contains, for example, activities like PV module cleaning, inverter servicing, and checks on structural integrity of the mounting structure. Corrective maintenance will be carried out in response to failures for example, the repair/exchange of damaged or faulty equipment.

3.5.4 Decommissioning Phase

Decommissioning refers to the process of removing all the operating assets of a project after completion of its life cycle from the project site. Typically, the following steps would be followed during the facility decommissioning:

- PV panels will be removed from the fixed aluminium frames.
- Fixed aluminium frame structures will be removed.
- PV panels will be transported to special recycling facilities (alternatively used at other operational sites).
- Electrical equipment (transformers) will either be re-used on other developments/projects or recycled.
- Underground cable runs (where applicable) will be removed and recycled.
- Gravel/chipstone on the access roads, onsite service roads, guardhouse foundations will be removed and reused.
- Buildings, such as the guardhouse can be taken over by the landowner for operational purposes, alternatively all the reusable material will be removed, the structures demolished and the rubble transported to a municipal waste site.
- Disturbed land areas will be rehabilitated, and replanted with indigenous vegetation.

The PV power facility would be decommissioned at the end of its projected 25 year operational life time. Alternatively, with regular maintenance, the facility could be upgraded, with the useful lifespan of the project extending beyond the design lifespan.

PASL shall consider working with PV CYCLE, an association which organises the take-back and recycling of PV modules at the end of the project life span. PV CYCLE operates a comprehensive recycling process, which recovers most of the materials within the PV panel (including glass, semiconductor material, ferrous and non-ferrous metals, etc.) for reuse in new products. All panels and major electrical components will be recycled.

The decommissioning phase is expected to take around 6 months.

3.6 Water Use and Management

The key benefit of the proposed Project in terms of resource use is the generation of electricity using freely available solar energy to produce electricity, reducing the dependence on fossil fuels for the generation of electricity and thereby reducing the carbon footprint associated with the Nigerian electricity network. However, water is required during both the construction and operation phase of the Project. This is further discussed below:

3.6.1 Water Requirements during Construction

During the construction phase, water demand is driven by the following key requirements:

- To make concrete for piled concrete mounting structure foundations; and
- For staff consumption and sanitation.

6 Water is also required to make concrete foundations for onsite buildings and other civil works but the volume required is considered negligible compared to the other two use cases.
Driven piles will be used for the mounting system; therefore no water will be required for concrete piled mounting structure foundations.

During construction, water will be required for sanitary and drinking purposes by onsite workers. It has been assumed that 25 litres per worker per day will be required to cover this demand. A project of this size would create approximately 200 jobs over an 8 month construction period, with an average of 140 staff on site per day, for each phase. This corresponds to a water requirement of 560,000 litres during each construction phase for worker consumption and sanitation for each phase. The capacity of the proposed water reservoir tank to be installed onsite is 500,000 litres.

On the basis of the assumptions and calculations above, total water requirement during each construction phase is estimated at 560,000 litres. The groundwater table at the project area and the rate of water recharge is relatively low compared to the southern part of Nigeria. However, during the rainy season, the water reserve of the aquifer in the project area increases; thus hand dug wells and boreholes yields improve significantly. Based on field survey of the project area, water abstraction for the project is not envisaged to significantly have negative effect on the existing groundwater aquifer of the area. This will be further assessed by the EPC contractor prior to construction activities.

3.6.2 Water Requirements during Operation
The main use of water during operation is for the regular cleaning of solar panels to prevent dust build-up, since dust can affect their performance. Water will also be required for drinking and sanitation purposes for onsite workers.

3.6.2.1 Operations and Maintenance Staff
For the purpose of drinking and sanitation, approximately 25 litres of water per day per onsite staff member is required. An average of 15-20 staff members on site each day is anticipated for the Project. This corresponds to a requirement of around 140,000 litres of water per year for operations and maintenance staff.

3.6.2.2 Washing of Panels
Without regular rainfall, dust and soil build up on the solar panels and inhibit the amount of irradiation that reaches the solar cells. For large PV plants in areas where there are long periods without rain, such as Katsina, manual cleaning of the modules with water is usually undertaken to reduce this effect; a mild, biodegradable and non-abrasive detergent may also be added to the water used. The schedule of cleaning under the operations and maintenance contract should

7 Based on a 5-day working week.
be set to keep the energy lost due to soiling under an acceptable level that matches the loss used in the energy yield and financial model.

The rainfall pattern in Katsina State is characterised by a long dry season from October to May, which includes the dusty Harmattan winds from the Sahel. The rate of build-up of soil and dust on the PV arrays is impacted by the soil type, wind speeds and the mounting structure used for the PV panels. It has been assumed that 3 manual washes of the arrays per year (in November, January and March) is a suitable cleaning regime for the proposed Project.

Based on previous experience, each MWp of panels would require approximately 2,000 litres of water per cleaning cycle. Based on a proposed capacity of approximately 80 MWp and 3 washes a year it has been estimated that the proposed Project would consume approximately 500,000 litres per year.

3.6.3 Water Supply System
All non-potable water required for use during the construction, operation and maintenance activities of the Project will be sourced from a borehole that will be constructed on the Project site, with potable water tankered and stored on site.

The borehole to be dug during the construction phase will also serve as source of water during the plant operation.

3.6.4 Stormwater drainage
Adequate drainage system will be constructed around the site according to the site conditions. Stormwater will be managed through a combination of open trenches and ditches. Stormwater shall drain away to the natural environment via gravity. Paved and concreted areas will be sloped to allow for proper drainage.

3.6.5 Wastewater
Wastewater from the operations of the proposed Project will primarily be as a result of the cleaning of the PV panels. The panel washing may require the use of gentle detergents, no strong detergents or chemical substances will be used. Therefore, the wastewater is regarded as non-hazardous.

3.6.6 Sanitary Waste
It is proposed that compost toilets will be used throughout the operation of the project. Compost toilets treat human waste material by aerobic processes. They do not require water and produce a compost-like, odourless, dehydrated material that can either be disposed of via municipal waste services or be used for the production of compost.
3.7 Workforce and Job Creation

PASL will have ultimate oversight over labor and working conditions for all phases of the Project. During construction, the majority of workers will be hired and managed by the EPC Contractor and other subcontractors.

It is envisaged that during each of the two construction phases, about 200 people will be employed for approximately 8 months. This would include around 20 experienced engineers, 10 experts and 150 - 180 local skilled, semi-skilled and unskilled workers.

During the site preparation period, the workforce required for site security, manual labour, civil works, transportation of goods and other similar services will be drawn from the local labour pool.

During pre-construction and early stages of construction, a highly-skilled team of solar energy technicians will train potential local employees, preferably from Katsina State, where possible. It is currently expected that some on-site construction workers’ accommodation and associated facilities will be required.

A total of about 20 job opportunities will arise during the operation phase, including skilled and semi-skilled labour (such as electrical and mechanical technicians) and unskilled labour (such as module cleaners and security personnel) for a duration of approximately 25 years.

PASL shall ensure that the workforce is managed in accordance with the requirements of the Nigerian Labour Act (1990) as well as the requirements of IFC Performance Standard 2 – Labour and Working Conditions. The proposed Project will neither involve the use of child labour nor forced labour. PASL shall ensure that occupational health and safety plan that commensurate with the level of construction activities planned for the Project is developed and implemented.

A Workforce Management Plan (refer to Chapter 7) will be developed that will apply to direct workers, contract workers, and supply chain workers. The Plan will outline human resource policies and procedures, terms of employment and working conditions, project workforce requirements, recruitment strategies, management of employment contracts, housing and transport of workers. The human resources policies and procedures will also focus on non-discrimination and equal opportunity.

The Workforce Management Plan will be designed to ensure that PASL manage its staff in accordance with the Labor Act (1990) and IFC standards, including allowing freedom of association, recognition of trade unions and respect for
collective bargaining agreements, protecting worker's rights in terms of the national legislation.

3.8 Health and Safety

Various health and safety plans specific to employees will be developed as part of the implementation of the proposed Project (see Chapter 7). A Worker Health and Safety Plan will be developed for all phases of the project and will be regularly updated and made appropriate to the project activities undertaken during each phase. The Worker Health and Safety Plan will be designed in line with Nigerian legislative requirements and the IFC/World Bank Group Environmental, Health and Safety Guidelines.

PASL will develop a Project Health and Safety Plan to evaluate the performance of contractors and subcontractors on the project through initial work in progress and end of job evaluations.

Worker activities will be managed through appropriate planning and the application of Permit-to-Work system, Job Hazard/Safety Analysis, Personal Protective Equipment (PPE) requirements and other safety based protocols.

For example, during construction phase, an H&S risk assessment based approach will be taken to manage H&S risks to workers. This would involve assessing all the various risks that are involved in each aspect of the job and educating workers on how to manage these risks. The people working around the project area shall also be warned of the risk involved i.e. warning signs shall be erected for people to see clearly.

All staff, workmen, supplier and sub-contractor working on site shall be informed on the need to ensure their safety and the safety of the people working around them. Every worker will be instructed to always put on PPE whilst on site. Perimeter fencing will be installed, and appropriate warning signs will be erected and checked each day. First aid equipment for workforce will be provided onsite. Daily health and safety tool-box meetings among workforce will be ensured. The safety briefings will be led by the onsite HSE officers.

3.9 Site Security

A Project site security plan, procedures, and contract will be established and implemented. The Security Management Plan (see Chapter 7) will be developed to assess security threats and identify specific measures to be put in place to address such security threats.
PASL will award a contract to an appropriate security company, to provide 24 hour security at the site. The site security contract will be required to comply with the above-mentioned Site Security Plan, Code of Conduct, as well as good international practices, such as IFC Performance Standards on security personnel in terms of the principles of proportionality, hiring, rules of conduct, training, equipping and monitoring of such personnel.

3.10 Associated Wastes Stream

It is the goal of PASL to design, construct, and operate the Project in a sustainable manner. To this end, effective waste management practices shall be implemented through the entire life cycle of the Project. A specific Waste Management Plan will be developed as part of the implementation of the proposed 80 MWp PV Power Project (refer to Chapter 7).

Waste management principles and priorities shall be based on an integrated approach which involves using a combination of techniques and programs to manage wastes. Waste reduction is at the top of the approach, followed by reuse as preferred options to disposal, which will be the last option.

All wastes generated from the Project will be categorised as either non-hazardous or hazardous following an assessment of the hazard potentials of the materials.

The main sources of waste from the proposed Project will largely result from the construction and decommissioning activities. One of the main sources of non-hazardous wastes will be domestic-type solid waste from the personnel during construction. These wastes may be produced daily and comprise the following:

- Domestic-type waste:
 - Residual packaging and food wastes
 - Metal cans (from food and drinks)
- Wooden pallets and cartons
- Scrap metal
- Concrete waste
- Paper and cardboard

The following hazardous wastes could also be associated with the Project.

- Oily rags and absorbents
- Used oil and oil filters - from generators or vehicle maintenance
- Contaminated water - slops and oily water from drip trays; and
The associated waste streams are described in the following paragraphs:

Non-Hazardous Waste
Construction waste will most likely consist of concrete (if concrete foundations are utilised to support the mounting structures in any areas). Driven pile is planned to be used for the PV module mounting system), cleared vegetation and scrap metal. All concrete mixing for onsite buildings foundations and other civil works will be undertaken on impermeable plastic lining to prevent contamination of the soils and surrounding areas. Waste management for the Project will incorporate reduction, recycling and re-use principles.

The development activities for the Project will include site clearing within the area needed for the project development. This activity will generate cleared vegetation which will be disposed offsite in a Government approved dumpsite. Alternatively, the organic wastes will be used for composting. The site is mostly dominated by shrubs and herbs. The possibility of clearing trees for firewood purpose is very minimal.

All waste that cannot be reused or recycled will be appropriately disposed of. All construction debris will be placed in appropriate onsite storage containers and periodically evacuated from the site to a Government approved dumpsite. The nearest approved dumpsite to the Project site is approximately 3 km. The refuse bins/containers to be used for temporary storage of wastes before they are evacuated to the approved dump site shall be in compliance with local standards and regulations and will comply with ISO 140001. A typical example is shown in Plate 3.4.

Waste evacuation will be carried out by a third party waste contractor licenced by the Katsina State Environmental Protection Agency (KATSEPA), the authority in Kastina State charged with the responsibility for waste collection and disposal. All generated refuse from the designated waste storage areas on site will be evacuated at least once a week.
Plate 3.4: A typical solid waste container to be used

It is estimated that approximately 200 m³ of construction debris will typically be produced per month, while approximately 0.2 m³ of solid waste is estimated to be generated per month during the operation phase.

Hazardous Waste
The construction and decommissioning phases may require the use of hazardous materials such as fuel and grease to fuel and maintain equipment and vehicles. These substances will be stored onsite in temporary storage tanks placed on the ground surface. The areas shall be properly demarcated, properly marked as hazardous and secured. Trucks and construction vehicles will be serviced on-site or off-site. The use, storage, transport and disposal of hazardous materials used for the project will be carried out in accordance with all applicable local and international regulations.

Hazardous wastes such as oily rags will be stored in properly labelled and sealed plastic or metal drums that are strategically located within the site where this category of waste may be generated pending disposal by KATSEPA. The waste bins shall be in compliance with local standards and regulations and will comply with ISO 140001. A typical example is shown in Plate 3.5.
Plate 3.5: A typical oil waste container to be used

Oil-impacted stormwater is not envisaged to be generated from the site.

3.11 Project Schedule

Phase 1 of the proposed Project is planned to commence in Quarter 1 (Q1) 2016 and be in full operations in Q3 2016. Phase 2 is anticipated to be operational a year later (2017). The Project will operate for approximately 25 years. The tentative schedule for each of the planned project activities is provided in Appendix 7.
CHAPTER FOUR:

DESCRIPTION OF THE EXISTING ENVIRONMENT
CHAPTER FOUR

DESCRIPTION OF THE EXISTING ENVIRONMENT

4.1 Introduction

This chapter presents the existing bio-physical and socio-economic (including health) conditions of the proposed Project area against which the potential and associated impacts of the Project are assessed.

Data and information for the description of the existing environmental conditions of the study area were obtained from desktop studies and field investigations carried out from October 17 to 21, 2014 (wet season survey). Additional site visit was also conducted from March 17 to 20, 2015 to better understand the environmental and socio-economic settings of the Project area.

The study area for the baseline survey (Project’s area of influence) (Figure 4.1) covers the following:

- The proposed Project site, occupying approximately 120 ha of land.
- The immediate surrounding environment of the Project site (chosen as a land area within a 1 km distance from the site boundary) which may be exposed to the Project activities.
- The wider area of Project influence which extends up to a 5 km radius of the Project site boundary.

The project’s area of influence has been selected based on the understanding of the proposed project activities, review of previous EIA report of the project area, and observations noted during the preliminary/reconnaissance survey of the project site. The project’s area of influence is selected to ensure that all sensitive receptors that could potentially be affected by the proposed project are considered.

The description of the existing environmental conditions of the study area presented in this chapter covers the following: Climate and meteorology; air quality and noise; geology and geomorphology; soil quality; hydrology and groundwater resources and quality; habitat and terrestrial flora (vegetation); terrestrial fauna (wildlife); land use; and socio-economic and health.

No natural/perennial surface water body exists on the Project site and the immediate surroundings as noted during the field survey as well as desktop review of report of previous EIA study conducted within the project area.
Figure 4.1: Map of the Study Area (direct and indirect project's area of influence)
4.2 Data Collection

Baseline information was collected using the following methods:

- Desktop review of existing reports related to the Project site and the surrounding environment;
- One season (wet season) of field sampling, measurements and laboratory analysis; and
- Additional information gathered from consultation with surrounding communities.

4.2.1 Desktop Study

Desktop studies involved the acquisition of relevant background information on the bio-physical and socio-economic environment of the study area. Information was sourced from the following government authorities:

- Nigerian Meteorological Agency (NIMET);
- Katsina State Ministry of Water Resources;
- Kankia Local Government Area; and
- National Population Commission (NPC)

Other sources of information include; final report of previous EIA study conducted in 2013 within the Project area, publications, textbooks, articles, maps as well as online sources.

4.2.2 Field Sampling and Analysis

In order to effectively characterise the environment of the study area, field sampling was conducted from October 17 to 21, 2014 (wet season survey) to complement the existing dry season data of the project area obtained in 2013. Prior to the field sampling, a reconnaissance survey of the study area was conducted from July 15 to 16, 2014.

Sampling locations were identified using recent satellite imagery of the study area. The basis of the sampling design was informed by a preliminary classification of the habitat types in the study area through desktop research and previous environmental assessment studies.

Sampling locations were selected to cover as much as possible the land area for the proposed Project as well as the existing sensitive receptors (for example, communities that could be indirectly or directly affected by the proposed Project). All sampling locations were geo-referenced using Garmin Map-62 series Global Positioning System (GPS) handsets. The sampling coordinates are presented in Table 4.1 below.
Table 4.1: Sampling Locations Coordinates

<table>
<thead>
<tr>
<th>Environmental Component</th>
<th>Sampling Code</th>
<th>Coordinates</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Latitude (N)</td>
<td>Longitude (E)</td>
<td></td>
</tr>
<tr>
<td>Air Quality and Noise</td>
<td>AQ1</td>
<td>12.56802</td>
<td>007.81502</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ2</td>
<td>12.57307</td>
<td>007.81732</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ3</td>
<td>12.56732</td>
<td>007.82198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ4</td>
<td>12.56926</td>
<td>007.81883</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ5</td>
<td>12.56940</td>
<td>007.80697</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ6</td>
<td>12.56479</td>
<td>007.81748</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ7</td>
<td>12.57044</td>
<td>007.81317</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ8</td>
<td>12.56390</td>
<td>007.81360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ9</td>
<td>12.56670</td>
<td>007.81048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ10</td>
<td>12.59657</td>
<td>007.82595</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ11</td>
<td>12.56191</td>
<td>007.80610</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ12</td>
<td>12.59656</td>
<td>007.85348</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A13(Ctrl)</td>
<td>12.59485</td>
<td>007.85125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ14(Ctrl)</td>
<td>12.51672</td>
<td>007.81082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ15</td>
<td>12.57446</td>
<td>007.80966</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ16</td>
<td>12.56315</td>
<td>007.80806</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ17</td>
<td>12.55233</td>
<td>007.83807</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ18</td>
<td>12.56189</td>
<td>007.81948</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ19</td>
<td>12.55190</td>
<td>007.84564</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AQ20</td>
<td>12.57014</td>
<td>007.82311</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>SK1</td>
<td>12.56802</td>
<td>007.81502</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK2</td>
<td>12.57307</td>
<td>007.81732</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK3</td>
<td>12.56732</td>
<td>007.82198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK4</td>
<td>12.56926</td>
<td>007.81883</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK5</td>
<td>12.56940</td>
<td>007.80697</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK6</td>
<td>12.57044</td>
<td>007.81317</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK7</td>
<td>12.56390</td>
<td>007.81360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK8</td>
<td>12.56670</td>
<td>007.81048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK9</td>
<td>12.59657</td>
<td>007.82595</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK10</td>
<td>12.56191</td>
<td>007.80610</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK11</td>
<td>12.59656</td>
<td>007.85348</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK12</td>
<td>12.51672</td>
<td>007.81082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AP1(Ctrl)</td>
<td>12.55189</td>
<td>007.84563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDKK(Ctrl)</td>
<td>12.57014</td>
<td>007.82311</td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td>GW1</td>
<td>12.55243</td>
<td>007.81260</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GW2</td>
<td>12.54833</td>
<td>007.82726</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GW3</td>
<td>12.55525</td>
<td>007.84035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GW4</td>
<td>12.61065</td>
<td>007.81748</td>
<td></td>
</tr>
<tr>
<td>Terrestrial Ecology</td>
<td>E1</td>
<td>7.811727</td>
<td>12.568672</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>7.807894</td>
<td>12.56594</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>7.816454</td>
<td>12.564671</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>7.841816</td>
<td>12.58783</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E5(Ctrl1)</td>
<td>7.787525</td>
<td>12.52797</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E6</td>
<td>7.807477</td>
<td>12.55542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E7</td>
<td>7.823006</td>
<td>12.57452</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E8(Ctrl2)</td>
<td>7.781431</td>
<td>12.60512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E9</td>
<td>7.815325</td>
<td>12.571713</td>
<td></td>
</tr>
</tbody>
</table>

Source: EnvAccord Field Survey, 2014
The field sampling activities were carried out in line with the appropriate quality assurance and quality control procedures. Soil and groundwater samples obtained from the field were transported to the laboratory and analysed for the required parameters. Laboratory analyses were conducted at Environmental Accord Laboratory in Lagos. The Laboratory is accredited by the Federal Ministry of Environment (FMEv) as well as the National Environmental Standard and Regulations Enforcement Agency (NESREA).

Laboratory analyses were consistent with the approved standard methodologies such as those recommended by ASTM International (formally called American Standards for Testing and Materials) and American Public Health Association (APHA). Some of the analytical methods used are highlighted below in Table 4.2.

Table 4.2: Some of the analytical methods used for field samples analysis

<table>
<thead>
<tr>
<th>S/N</th>
<th>Parameters</th>
<th>Analytical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Total Suspended Solids</td>
<td>Gravimetric method</td>
</tr>
<tr>
<td>2.</td>
<td>Biological Oxygen Demand (BOD)</td>
<td>Dilution method</td>
</tr>
<tr>
<td>3.</td>
<td>Chemical Oxygen Demand (COD)</td>
<td>Reflux dichromate method</td>
</tr>
<tr>
<td>4.</td>
<td>Oil and Grease</td>
<td>Photometric method</td>
</tr>
<tr>
<td>5.</td>
<td>Alkalinity</td>
<td>Titration method</td>
</tr>
<tr>
<td>6.</td>
<td>Total Hardness</td>
<td>Titration method</td>
</tr>
<tr>
<td>7.</td>
<td>Nitrate</td>
<td>Colorimetric method</td>
</tr>
<tr>
<td>8.</td>
<td>Sulphate</td>
<td>Turbidimetric method</td>
</tr>
<tr>
<td>9.</td>
<td>Phosphate</td>
<td>Colorimetric method</td>
</tr>
<tr>
<td>10.</td>
<td>Sodium</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>11.</td>
<td>Potassium</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>12.</td>
<td>Lead</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>13.</td>
<td>Nickel</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>14.</td>
<td>Cadmium</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>15.</td>
<td>Zinc</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>16.</td>
<td>Copper</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>17.</td>
<td>Chromium</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>18.</td>
<td>Manganese</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>19.</td>
<td>Iron</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field Survey, 2014

The results of the field measurements and laboratory analyses were compared with the relevant Nigerian regulatory standards, IFC/World Bank Group Environmental, Health and Safety (EHS) Guidelines and World Health Organisation (WHO) guidelines and limits. In line with the FMEv requirements, the field sampling activities were witnessed by FMEv and Katsina State Ministry of Environment representatives.

4.2.3 Consultation with Local Communities

Information was gathered during the stakeholder consultation and socio-economic baseline study undertaken within the communities of Galadima, Gachi,
Kafin Dangi, Kauyan Maina, and Kankia in the Project area. Information related to the bio-physical aspects of the Project site was also captured through the engagement. The additional information gathered from the local communities relates to ecosystem services and livelihood aspects within the study area.

4.3 Overview of Environmental and Social Setting of the Project Area

The Project site is a 120 ha of land located in Kankia LGA of Katsina State. As indicated in the previous chapters, the site was acquired from the Katsina State Government in two tranches of 50 ha and 70 ha in return for equity stake in the Project ownership. Rights to possess the site have been granted to PASL.

The existing vegetation of the site and the surrounding environment is largely secondary in nature and typifies a Sudan savannah dominated by shrubs, grasses and herbs. The Project site is sparsely vegetated and has a few trees (less than 10 in number). There are no existing structures or farmlands on the site. The topography of the area is gently undulating. No rocky outcrops are present within the Project site based on field observation. Although, grazing activities were observed on site during field activities, the site is not known to fall within any gazeted grazing reserves or grazing routes.

The existing receptors or resources identified in the immediate surroundings (500 m radius) of the Project site boundary (Figure 4.2) are:

- An abandoned fish rearing house (“Gidan Kifi”), located approximately 40 m south of the site. The structure belongs to Kankia LGA.
- An abandoned bee keeping house (“Gidan Zuma”), approximately 75 m south of the site. The structure is owned by Kankia LGA.
- Katsina State Metal Works Factory (not in operation), located approximately 165 m east of the site.
- An abandoned building located approximately 20 m east of the site. The structure belongs to Katsina State Water Board.
- Federal Road Maintenance Agency (FERMA) site building, approximately 300 m east of the Project site.
- Fanga village located approximately 300 m north of the site.
- Kankia dam, approximately 250 m south of the site.
- European Union (EU) old tree seedling nursery site, approximately 210 m south of the site.
- Gandi Primary School located approximately 50 m west of the site. It consists of a 2-block of classroom, one of which was dilapidated as at the time of site visit in March 2015. It was also gathered from the local communities during the visit that the school was still in use.
Figure 4.2: Map of existing receptors/resources within 500 m radius of the Project site
4.4 Description of Environmental Characteristics of the Project Area

4.4.1 Climate and Meteorology

The Project site is located in Kankia LGA of Katsina State, Northern region of Nigeria. The description of the climatic characteristics of the Project area presented in this section is based on the long term meteorological data of Katsina State spanning 1989 to 2013. The data were obtained from the Nigerian Meteorological Agency (NIMET).

The climate of Katsina State is the tropical wet and dry type (tropical continental climate). The wet season period is usually between April and October, while the dry season is experienced between November and March. The climate of the study area is tropical and it is under the influence of the Inter-Tropical Convergence Zone (ITCZ) or Inter-Tropical Discontinuity Zone (ITDZ).

The monthly mean climatic characteristics of Katsina State between 1989 and 2013 are summarized below in Table 4.3.

Table 4.3: Summary of Monthly Mean Climatic Characteristics of Katsina State (1989-2013)

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature (°C)</th>
<th>Relative Humidity (%)</th>
<th>Rainfall (mm)</th>
<th>Wind Speed (m/s)</th>
<th>Sunshine Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>9:00Hr</td>
<td>15:00Hr</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>12.78</td>
<td>30.28</td>
<td>19.42</td>
<td>12.67</td>
<td>0.00</td>
</tr>
<tr>
<td>February</td>
<td>15.13</td>
<td>32.25</td>
<td>14.04</td>
<td>10.50</td>
<td>0.00</td>
</tr>
<tr>
<td>March</td>
<td>19.82</td>
<td>36.74</td>
<td>13.13</td>
<td>9.63</td>
<td>1.05</td>
</tr>
<tr>
<td>April</td>
<td>23.72</td>
<td>39.18</td>
<td>25.46</td>
<td>14.42</td>
<td>17.18</td>
</tr>
<tr>
<td>May</td>
<td>24.58</td>
<td>38.08</td>
<td>45.63</td>
<td>26.92</td>
<td>40.54</td>
</tr>
<tr>
<td>June</td>
<td>23.38</td>
<td>35.49</td>
<td>55.96</td>
<td>37.00</td>
<td>84.09</td>
</tr>
<tr>
<td>July</td>
<td>21.55</td>
<td>31.87</td>
<td>69.04</td>
<td>52.42</td>
<td>150.91</td>
</tr>
<tr>
<td>August</td>
<td>20.95</td>
<td>30.60</td>
<td>75.71</td>
<td>60.33</td>
<td>171.66</td>
</tr>
<tr>
<td>September</td>
<td>21.35</td>
<td>32.59</td>
<td>69.50</td>
<td>52.25</td>
<td>83.40</td>
</tr>
<tr>
<td>October</td>
<td>20.09</td>
<td>34.82</td>
<td>42.17</td>
<td>26.04</td>
<td>16.59</td>
</tr>
<tr>
<td>November</td>
<td>15.42</td>
<td>33.20</td>
<td>19.79</td>
<td>14.83</td>
<td>0.00</td>
</tr>
<tr>
<td>December</td>
<td>12.74</td>
<td>30.49</td>
<td>19.67</td>
<td>14.25</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Source: NIMET 2014

Each of the climatic elements of the Project area is briefly described below:

- **Rainfall**

Rainfall pattern in the Project area is between April and October with a peak in August as indicated in Figure 4.3. The average annual rainfall in the area is about 600 mm. The analysis of the data indicates that rainfall in Katsina State is quite lower than what is experienced in most of the states in the southern region of Nigeria such as Lagos and River States.
Temperature

Temperature is a dominant climatic factor which varies from place to place over a period of time. The mean monthly temperature recorded in the Project area between 1989 and 2013 was approximately 35 °C in the wet season months (April – October) and 33 °C in the dry season (November – March). Figure 4.4 shows the comparison of the maximum and minimum temperature values recorded in the area.

Figure 4.4: Mean monthly minimum and maximum Temperature for Katsina State (1989-2013)
Source: NIMET 2014
Relative Humidity

Relative humidity is the quantitative expression of wetness or dryness (in percentage) of air. The relative humidity profile of the Project area is depicted in Figure 4.5 below. High relative humidity values of approximately 45 % to 75 % were recorded between April and October.

![Figure 4.5: Monthly Relative Humidity in Katsina State (1989-2013)](source: NIMET 2014)

Wind

The lowest mean monthly wind speed in the Project area is about 4.92 m/s obtained in the month of October while the highest annual mean value of 8.78 m/s was recorded in the month of June (Figure 4.6). The maximum wind speed recorded in the Project area between 1989 and 2013 was 15.7 m/s in October.

![Figure 4.6: Average Wind Speed in Katsina State (1989-2013)](source: NIMET 2014)
The prevailing wind directions in the Project area are East and South-West Trade Winds. The East wind predominates during the dry season while in the wet season the dominant wind direction is usually the South-West as shown in Table 4.4. Figure 4.7 below shows a wind rose for the project area.

Table 4.4: Summary of Monthly Wind Direction in Katsina State (1989-2013)

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>E</td>
<td>NE</td>
<td>S</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>SW</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>1990</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>SW</td>
<td>S</td>
<td>W</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>1991</td>
<td>NE</td>
<td>NE</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1992</td>
<td>NE</td>
<td>NE</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>1993</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1994</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1995</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1996</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1997</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1998</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>NW</td>
<td>NW</td>
<td>SE</td>
<td>SE</td>
</tr>
<tr>
<td>1999</td>
<td>E</td>
<td>NE</td>
<td>S</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>2000</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>SW</td>
<td>S</td>
<td>E</td>
<td>E</td>
<td>NE</td>
</tr>
<tr>
<td>2001</td>
<td>E</td>
<td>NE</td>
<td>E</td>
<td>E</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>SW</td>
<td>S</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2002</td>
<td>E</td>
<td>NE</td>
<td>E</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>E</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>2003</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>E</td>
<td>E</td>
<td>NE</td>
</tr>
<tr>
<td>2004</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>W</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2005</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2006</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>SW</td>
<td>SW</td>
<td>W</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2007</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>NW</td>
<td>NW</td>
<td>SE</td>
<td>SE</td>
</tr>
<tr>
<td>2008</td>
<td>E</td>
<td>NE</td>
<td>S</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>2009</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>SW</td>
<td>S</td>
<td>W</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>NE</td>
</tr>
<tr>
<td>2010</td>
<td>NE</td>
<td>NE</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2011</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>SW</td>
<td>SW</td>
<td>S</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>2012</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2013</td>
<td>E</td>
<td>E</td>
<td>NE</td>
<td>E</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>Sw</td>
<td>W</td>
<td>E</td>
<td>NE</td>
<td>E</td>
</tr>
</tbody>
</table>

Source: NIMET 2014
Figure 4.7: Wind Rose for the Project Area

- **Sunshine Hour**
 Although, variations do occur, it never exceeds ± 1 hour of daylight or darkness. The mean monthly sunshine hour in the Project area ranges between 7.09 hours in August (peak of the rainy season) and 8.75 hours in October.

Katsina State generally experiences high sunshine hours throughout the year and is regarded as one of the states in Nigeria with high intensity of sunlight. The number of daily sunshine hours is strongly related to the influence of seasonal atmospheric alteration by cloud and rainfall. The mean monthly distribution of sunshine hours in the study area between 1989 and 2013 is shown in Figure 4.8.
4.4.2 Ambient Air Quality and Noise

A total of twenty (20) locations were sampled in the study area for ambient air quality and noise. The air quality and noise sampling locations maps are shown in Figures 4.9 and 4.10. Sample photographs of activities during the air quality measurements are provided in Plate 4.1.

In-situ air quality measurement was conducted at each of the sampling stations using pre-calibrated Aeroqual 500 and Aerocet 531. The air quality parameters measured include: Sulphur (IV) Oxide (SO₂), Nitrogen (IV) Oxide (NO₂), Carbon monoxide (CO), Carbon Dioxide (CO₂), Ammonia (NH₃), Hydrogen Sulphide (H₂S), and Total Suspended Particulate.

Ambient noise levels were measured using a pre-calibrated Extech Integrated Sound Level Meter (detection range of 30 dBA to 130 dBA) on the A-weighted scale in unit decibels.

The A-weighted sound level measurement is frequently used in the assessment of overall noise emission because it is considered to provide a rating of industrial broadband noises that indicate the injurious effects such noise has on the human ear. As a result of its simplicity in rating the hazard to hearing and its ability to provide reasonably good assessments of speech interference and community disturbance conditions, the A-weighted sound levels have been adopted by United States Environmental Protection Agency (USEPA) and the American Conference of Governmental Industrial Hygienists (ACGIH) as the preferred measurement for assessing noise exposure.
Figure 4.9: Air Quality and Noise Sampling Locations (within the Project Site and its immediate surroundings)
Figure 4.10: Air Quality and Noise Sampling Locations in the entire Study Area
The results of air quality and ambient noise level of the study area are summarized in Table 4.5 below. Detailed results for each of the sampling locations are provided in Appendix 6.

Table 4.5: Descriptive summary of air quality and noise results of the study area

<table>
<thead>
<tr>
<th>Parameter/Unit</th>
<th>Wet Season</th>
<th>Dry Season (data obtained from report of previous study conducted in 2013 within the project area)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean</td>
</tr>
<tr>
<td>TSP (ppm)</td>
<td>0.037-0.174***</td>
<td>0.094***</td>
</tr>
<tr>
<td>CO (mg/m³)</td>
<td>0-1.01</td>
<td>0.078</td>
</tr>
<tr>
<td>SO₂ (mg/m³)</td>
<td>0-1.13</td>
<td>0.072</td>
</tr>
<tr>
<td>NO₂ (mg/m³)</td>
<td>0.046-0.241</td>
<td>0.127</td>
</tr>
<tr>
<td>CO₂ (ppm)</td>
<td>312-852</td>
<td>540.722</td>
</tr>
<tr>
<td>H₂S (ppm)</td>
<td>0-0.14</td>
<td>0.014</td>
</tr>
<tr>
<td>CH₄ (ppm)</td>
<td>0-0.14</td>
<td>0.008</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>0-0.25</td>
<td>0.128</td>
</tr>
<tr>
<td>Noise Level, dBA</td>
<td>51.5-70.9</td>
<td>58.62</td>
</tr>
</tbody>
</table>

Source: *EnvAccord Wet Season Field Survey, October 2014; **EIA of 20 MW Photovoltaic Solar Power Project at Kankia, 2013*** mg/m³

The concentrations of air quality parameters recorded in the study area were compared with the Nigerian Ambient Air Quality Standards (NAAQS) and the WHO.
Air Quality Guidelines. Also, the ambient noise levels recorded in the area were compared with the FMEnv standards and the World Bank Noise Level Guidelines. The summary of these limits is provided in Tables 4.6 to 4.8.

Table 4.6: Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>FMEnv Limit (µg/m³)</th>
<th>WHO Guidelines (µg/m³)</th>
<th>WHO Guidelines (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>11.4</td>
<td>10.0</td>
<td>11.4</td>
</tr>
<tr>
<td>NO₂</td>
<td>1-hour</td>
<td>75-113</td>
<td>0.04-0.06</td>
<td>75-113</td>
</tr>
<tr>
<td>TSP</td>
<td>24-hour</td>
<td>250</td>
<td>-</td>
<td>250</td>
</tr>
<tr>
<td>SO₂</td>
<td>1-hour</td>
<td>260</td>
<td>0.1</td>
<td>260</td>
</tr>
</tbody>
</table>

Source: FMEnv 1991; World Bank General EHS 2007

Table 4.7: Noise Exposure Limits for Nigeria

<table>
<thead>
<tr>
<th>Duration per Day, Hour</th>
<th>Permissible Exposure Limit dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
</tr>
</tbody>
</table>

Source: FEPA (now FMEnv), 1991

Table 4.8: World Bank Noise Level Guidelines

<table>
<thead>
<tr>
<th>Receptor</th>
<th>One Hour LAeq (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day time (07:00 - 22:00)</td>
</tr>
<tr>
<td>Residential; institutional; educational</td>
<td>55</td>
</tr>
<tr>
<td>Industrial; commercial</td>
<td>70</td>
</tr>
</tbody>
</table>

The results of air quality measurements carried out in the study area are discussed as follows:

- **Wet Season**

 During the wet season, TSP concentrations recorded in the study area ranged from 0.037 mg/m³ to 0.174 mg/m³ with an average value of 0.0943 mg/m³. The values were below the national ambient air quality standard for TSP in ambient air (0.25 mg/m³). This indicates that the ambient air of the project area could be said to be good in terms of TSP concentration during the wet season.

 The SO₂ concentrations recorded at the proposed Project site during the wet season were mostly below the detection limit 0.01 ppm. In contrast however, varied concentrations of SO₂ which ranged from <0.01 – 1.13 ppm were recorded at the sampling locations outside the Project site. In general, the low SO₂ concentrations recorded across the project site was indicative of an unpolluted environment while the high SO₂ values recorded in some sampling locations
(AQ11, AQ16, AQ17 and AQ20) outside the project site could be attributed to vehicular movements as noted during field sampling.

NO\textsubscript{2} concentrations recorded in the study area during the wet season survey ranged from 0.046 to 0.241 ppm with a mean value of 0.126 ppm. For some of the sampling locations, elevated concentrations of NO\textsubscript{2} were recorded, these were found to exceed the FMEnv standard for NO\textsubscript{2} in ambient air (0.04 - 0.06 ppm for 1-hour time weighted average). However, this could be due to vehicular movement.

The concentrations of CO recorded in the study area during the wet season survey ranged from 0.00 ppm to 1.01 ppm with an average value of 0.11 ppm. The CO values obtained were below the FMEnv limit of 10 ppm (1-hour time weighted average) for CO concentration in ambient air.

The ambient noise level recorded in the study area during the wet season survey ranged from 51.50 dBA to 70.90 dBA with an average of 58.38 dBA. The noise levels were generally below the FMEnv limit of 90 dBA.

- **Dry Season**

The TSP values reported in the study area during the dry season survey ranged from 0.05 mg/m3 to 0.52 mg/m3. This maximum TSP value was found to be above the FMEnv prescribed limit for TSP in ambient air (0.25 mg/m3). This could be attributed to the intense dusty-dry harmattan winds that predominate in the study area during the dry season. The SO\textsubscript{2} concentrations reported for the study area ranged from 0.1 to 0.2 mg/m3, below the FMEnv recommended limit for SO\textsubscript{2} in ambient air (0.26 mg/m3). The NO\textsubscript{2} concentration recorded across the study area during this period ranged from 0.1 - 0.2 mg/m3 which is slightly higher than the FMEnv limit for NO\textsubscript{2} in ambient air (0.075 - 0.113 mg/m3).

The ambient noise level reported in the study area during the dry season ranged from 55.3 to 69.7 dBA, below the FMEnv limit of 90 dBA.

- **Seasonal Variation**

The comparison of the ambient air quality results over the dry and wet seasons show that there are no significant seasonal variations in the values obtained. Generally, the concentrations of air quality parameters tend to be higher in the dry season than the wet season due to the prevailing weather conditions in the dry season such as high temperature, low relative humidity and high wind speed which contribute to an increase in ambient pollutants concentrations especially suspended particulate. No significant seasonal variation was also noted in the levels of ambient noise recorded in the study area.
4.4.3 Geology and Geomorphology

4.4.3.1 General Geology of Katsina State

Katsina State is composed of undulating plains which generally rise gently from 360m in the northeast around Daura, to 600m around Funtua in the southwest. Generally, the state has two geological regions. The south and central parts of the state are underlain by crystalline rocks of the Basement Complex (from Funtua to DutsinMa), but in the northern parts cretaceous sediments overlap the crystalline rocks. Kankia is underlain by Pre-cambrian complex.

4.4.3.2 Geology of the Project Site

The site geotechnical survey (initially undertaken for Phase 1 site) revealed that the near-surface ground of the area was formed of compacted fine-grained sediments, such as clays and silts and a conglomerate with lateritic matrix. The results of a sieve analysis of the fine-grained sediments identified hard sandy clay and sandy clay. Quartzite pebbles of 10 mm were identified as the largest single component in the conglomerate. There are no rocky outcrops within the entire project site covering approximately 120 ha. However, the Pre-cambrian granitic host-rock in form of rocky outcrop is found immediately outside the Project site towards the south.

4.4.3.3 Elevation, Relief and Surface Drainage

The site terrain is wavy with a maximum variation in elevation of 10 m, between approximately +546 m and +535 m msl. The upper-surface lies, mainly, on a lateritic conglomerate matrix. The conglomerate is partly covered by a firm, medium-plastic clay layer. The elevation survey of the area shows a slightly undulating and generally westward sloping surface. The mean elevation of the area was +542 msl. Appendix 7 contains additional information on the geotechnical survey report of the Project area.

There are two major clay excavation pits towards the southeast of the site. The maximum depth of the pits is approximately 3.5 m. The pits are at least in the rainy season partially filled. The natural drainage pattern in the area is towards the south of the Project site where Kankia Dam is located.

4.4.4 Soil

A total of twelve (12) stations within the study area were sampled for soil analysis. The soil sampling locations are presented in Figures 4.11 and 4.12. Soil samples were collected using a stainless steel auger at two depths: 0-15 cm (top soil) and 15-30 cm (sub soil). Once the auger was retrieved, the contents were examined to note the physical characteristics. The soil samples were then stored and transported to the laboratory for physico-chemical and microbial analysis.
Figure 4.11: Soil sampling locations within the Project site and its immediate surroundings
Figure 4.12: Soil sampling locations within the entire study area
4.4.4.1 Soil Texture
The soil texture was determined by the balance of clay, silt and sand particles and by the organic humus content of the soil. For practical considerations, soil texture and related soil structure influence soil workability, drainage and management.

Table 4.9 summarizes the percentage composition of clay, silt and sand recorded in soil samples from the study area. The soil of the Project area can generally be described as sandy clay.

Table 4.9: Summary of Soil texture of the Project Area

<table>
<thead>
<tr>
<th>Composition (%)</th>
<th>*Wet Season Range</th>
<th>**Dry Season (data obtained from report of previous study conducted in 2013 in the project area) Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (%)</td>
<td>4.76-20.13</td>
<td>12.00-24.30</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>0.93-6.31</td>
<td>16.00-19.50</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>74.39-94.17</td>
<td>68.00-69.70</td>
</tr>
<tr>
<td>Bulk Density g/cm³</td>
<td>0.691-1.745</td>
<td>1.50-1.55</td>
</tr>
</tbody>
</table>

Source: *EnvAccord Wet Season Field Survey, October 2014; **EIA of 20 MW Photovoltaic Solar Power Project at Kankia

4.4.4.2 Soil Erodibility
Soil erodibility is an estimate of the ability of soils to resist erosion, based on the physical characteristics of each soil. Generally, soils with faster infiltration rates, higher levels of organic matter and improved soil structure have a greater resistance to erosion.

Larger soil particles such as sand are more easily detached. Coarse-textured soils high in sand are not easily eroded by water because rainfall can infiltrate them easily, so there is little runoff to detach and transport them. However, sandy soils are prone to wind erosion because the individual particles are easy to detach. Sand, sandy loam and loam textured soils tend to be less erodible than silt, very fine sand, and certain clay textured soils.

Based on the results of grain size analysis presented in Table 4.9 above, the Project area is not considered to be prone to erosion that could be significant. However, as observed during the field survey, a section of the Project site (approximately 3 ha) towards the south had in the past been flooded (Plate 4.2). The flood plain area is considered to be lowland characterized by loose sandy soil.
Plate 4.2: A cross section of the flood plain area within the project site

4.4.4.3 Physico-chemical Characteristic of the Soil

Table 4.10 below presents the descriptive summary of the results of some physico-chemical parameters analysed in soil samples collected from the study area. The full results are provided in Appendix 6.

Table 4.10: Descriptive Summary of Some Parameters analysed in the Soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>*Wet Season</th>
<th>**Dry Season (data obtained from report of previous study conducted in 2013 in the project area)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean</td>
</tr>
<tr>
<td>pH</td>
<td>5.02-8.42</td>
<td>6.50</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>1.33-13.3</td>
<td>4.55</td>
</tr>
<tr>
<td>NO$_3^-$ mg/kg</td>
<td>1.00-7.00</td>
<td>4.00</td>
</tr>
<tr>
<td>SO$_2^+$ mg/kg</td>
<td>8.00-28.00</td>
<td>12.79</td>
</tr>
<tr>
<td>PO$_4^{3-}$ mg/kg</td>
<td>4.00-31.00</td>
<td>11.39</td>
</tr>
<tr>
<td>Fe, mg/kg</td>
<td>48.89-112.56</td>
<td>79.44</td>
</tr>
<tr>
<td>Pb, mg/kg</td>
<td>0.00-0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Zn, mg/kg</td>
<td>0.00-0.14</td>
<td>0.06</td>
</tr>
<tr>
<td>Ni, mg/kg</td>
<td>0.00-0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>Cu, mg/kg</td>
<td>0.00-0.31</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Source: *EnvAccord Wet Season Field Survey, October 2014; **EIA of 20 MW Photovoltaic Solar Power Project at Kankia
The soil physico-chemical results are briefly discussed in the following paragraphs:

For the wet season sampling, the soil pH ranged from 5.02 to 8.42 (i.e. slightly acidic to alkaline). Soil pH is a measure of the free H⁺ and OH⁻ concentration of soil solutions. The importance of soil reaction lies in the fact that it provides a variety of useful information such as relative availability of plant nutrients, extent of H⁺ formation by hydrolysis of aluminium and degree of dissociation of H⁺ from cation exchange sites. The pH values recorded in the soil fall within the optimal pH range of 4.5 to 9.0 within which plants can grow well for agricultural purposes.

Moisture Content: The moisture content of the soil is a major constituent of plant protoplasm and is essential for photosynthesis. It is also the medium of nutrients movement into and through plant parts and, provides turgidity, which helps plant parts to maintain proper form and position to be able to capture sunlight. The amount of moisture in soil depends on many factors which include soil type, soil organisms, soil organic matter, and climatic conditions. The moisture contents of soil samples from the study area ranged from 1.05 % to 13.30 % in the wet season.

Anions: The nitrate concentrations in the soil samples (top and sub soil) ranged from 1.00 mg/kg to 7.00 mg/kg while phosphate ranged from 4.00 to 32.00 mg/kg. The soil nutrient in terms of nitrate and phosphate concentration is considered to be low. Sulphate concentrations in the soil samples ranged from 8.00 mg/kg to 28.00 mg/kg.

Heavy Metals: Heavy metals are metals having a mass number greater than 20 and a specific gravity greater than 5.0 g/cm³. They occur naturally in the environment at low concentrations. However, heavy metal pollution may occur when anthropogenic activities cause the discharge of heavy metal laden waste into the environment. When this occurs, plant and animals may absorb these toxic elements which can impair proper growth and physiological development.

Some heavy metals such as Zinc (Zn) and Iron (Fe) are however needed in trace amounts by plants for physiological activities. For example, Fe is required in plants for chlorophyll formation. At elevated concentrations beyond the naturally occurring level or permissible limit, heavy metals pose threat to plants.

The concentrations of heavy metals recorded in soil samples from the study area during the wet season sampling are provided as follows:

Copper (Cu): Cu concentrations in the soil samples ranged from 0.01 mg/kg to 0.31 mg/kg which fall within the recommended limit 50-100 mg/kg for tropical arable soils as prescribed by Alloway 1990.
Lead (Pb): Pb concentrations ranged from <0.001 mg/kg to 0.05 mg/kg. The values of Pb recorded in the soil samples were below the prescribed limit of 2-20 mg/kg for unpolluted soil (Alloway 1990).

Iron (Fe): Fe had the highest concentration among the heavy metals analyzed in the soil samples. Its concentration ranged between 48.89 mg/kg and 132.70 mg/kg. Fe is regarded as one of the most abundant heavy metals in the earth crust.

Zinc (Zn): The concentrations of Zn recorded in the soil samples ranged from <0.001 mg/kg to 0.14 mg/kg. The values are below the prescribed limit of 10-50 mg/kg for Zn in unpolluted soil.

Nickel (Ni): Ni concentrations in the soil samples ranged from <0.001 mg/kg to 0.1 mg/kg, below the prescribed limit of 5-500 mg/kg (Alloway 1990).

For the dry season results, the physico-chemical characteristics of soil environment of the project area were based on the findings of previous EIA study conducted in 2013 within the project area. The pH values reported ranged from 6.2 to 6.4, indicating slightly acidic. Calcium ranged from 0.45 mg/kg to 2.25 mg/kg, Potassium ions ranged from 1.10 mg/kg to 2.09 mg/kg, and Magnesium ions ranged from 0.13 mg/kg to 1.00 mg/kg. The concentrations of the cations were similar to the levels often recorded in soil environment in tropical areas. No heavy metal pollution was reported in the soils. The concentrations of heavy metals reported in the soil samples from the Project area during the dry season survey are generally within the naturally occurring limits (refer to Appendix 6).

4.4.4.4 Soil Microbiology
The population of total heterotrophic bacteria (THB) and total heterotrophic fungi (THF) counts in soil samples from the study area is summarized in Table 4.1. Microorganisms are ubiquitous and also present in the soil environment.

The THB and THF counts in the soil are similar to those occurring in natural level. THB and THF in the soil samples ranged from 1.25×10^8 to 2.99×10^8 cfu/gm and 3.0×10^4 to 13.0×10^4 cfu/gm respectively. The percentage of hydrocarbon utilizing bacteria (HUB) in the soil samples is less than 1% of the total heterotrophic bacteria recorded in the study area. This indicates that the soil environment is not polluted with hydrocarbon compounds that could serve as substrates for the HUB to thrive well.
Table 4.11: Descriptive summary of the Microbiological Content of Soil Samples from the study area

<table>
<thead>
<tr>
<th>Parameter/Unit</th>
<th>Wet season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Total Heterotrophic Bacteria/Total Plate Count x 10^8 cfu/ml</td>
<td>1.18-2.99</td>
</tr>
<tr>
<td>Total Heterotrophic Fungi x 10^4 cfu/ml</td>
<td>3.00-13.00</td>
</tr>
<tr>
<td>Total Coliforms</td>
<td>0.00-1.50</td>
</tr>
<tr>
<td>Hydrocarbon Utilizing Bacteria x 10^2 cfu/ml</td>
<td>12.00-32.00</td>
</tr>
<tr>
<td>Hydrocarbon Utilizing Fungi x 10^2 cfu/ml</td>
<td>1.00-8.00</td>
</tr>
<tr>
<td>% Percentage Hydrocarbon Utilizers</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Source: EnvAccord Wet Season Field Survey, October 2014

4.4.4.5 Seasonal Variation of Soil Sample Results
No significant variations were noted in the results of soil samples from the study area during the wet and dry seasons. The soil of the area is generally slightly acidic with low level of nutrients. No heavy metals accumulations were recorded in the soil during the wet and dry seasons.

4.4.5 Hydrology, Water Use and Groundwater Quality

4.4.5.1 Hydrology
The hydrological survey of the Project site and its surrounding environment revealed that the Project area is generally lacking in natural surface water bodies or seasonal river beds. Periodic rainfall is expected to occur in the area (especially in the month of April to October) resulting in storm water. The run-off is largely expected to readily penetrate the surface soil locally or drain along the surface terrain through the central depression in the Project site in the south westward direction. The tendency for flooding in the project area is very limited. The Project area generally experiences low annual rainfall compared to the Southern part of Nigeria.

4.4.5.2 Water Use in the Project Area
Water plays an important role in human’s daily activities. In order to gain a better understanding of the water use in the study area, interviews were held with some residents in the Project’s host communities. A walk-around tour of the communities was also undertaken.

The major sources of water in the Project area are hand dug wells, boreholes, excavated pits (for water retention) and Kanki Dam. The nearest shallow hand dug well to the Project site is approximately 330 m north in Fanga Village, one of the villages/wards that constitute Kafin Dangi community. The depth of the well as at the time of site visit in March 2014 was approximately 70 m. Another shallow well
close to the Project site is approximately 1 km southwest in Kauyan Dawa community with a depth of approximately 30 m. The hand dug wells are mostly recharged during the rainfall period. No existing borehole is present within the Project site. Water for the proposed Project activities will be sourced from boreholes which will be dug onsite.

Some of the boreholes in the communities, where available, are provided by the Kankia LGA as part of its rural development programme.

The Kankia Dam is situated approximately 200 m southwest of the Project site. The dam was constructed about 12 years ago by the Kastina State Government (Ministry of Water Resources) to serve as a source of water for irrigation and domestic use in Kankia. At the time of site visit in March 2014, the dam was found to be non-operational and under repair. Information from officials of Kankia LGA revealed that the dam had been non-functional for about two (2) years. This was attributed to an incomplete maintenance work carried out on the dam. It was also gathered that the Federal Government, through the Sokoto-Rima River Basin Development Authority is planning to revamp the dam. The capacity of the dam could not be ascertained at the time of this study. No electricity (power) is generated from the dam.

Water is mostly used in the Project area for domestic purposes, irrigation and livestock rearing as indicated in Plate 4.3.

Plate 4.3: Water use activities in the Project Area
4.4.5.3 Groundwater Quality

Groundwater samples were collected from existing boreholes and hand dug wells in the study area, specifically from the neighbouring communities. A total of four (4) groundwater resources were sampled, inclusive of control point. The sampling locations are indicated in Figure 4.13.

At each sampling station, groundwater samples were collected into 2-litre polyethylene bottles for general physico-chemical analysis, while samples for oil & grease / hydrocarbon determination were collected in 1-litre glass bottles and preserved with concentrated sulphuric acid. Samples for heavy metals were collected separately in plastic containers and fixed with concentrated nitric acid. Pre-sterilized 50 ml McCartney bottles were used for samples meant for microbial analysis.

In-situ measurement was conducted in the groundwater samples for the following parameters (with short holding time):

- pH,
- Electrical conductivity,
- Total dissolved solids (TDS),
- Dissolved oxygen,
- Ambient water temperature

Measurement was carried out with the use of a pre-calibrated Extech Oyster Water. Plate 4.4 below shows sample photographs of groundwater sampling activities in the study area.

Plate 4.4: Groundwater sampling activities in the Study Area
Figure 4.13: Groundwater sampling locations in the study area
The results of the physico-chemical analysis of groundwater samples collected from the study area are summarized in Table 4.12 below. The full results are provided in Appendix 6.

Table 4.12: Descriptive summary of physico-chemical results of groundwater samples from the study area

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>*Wet Season</th>
<th>**Dry Season (data obtained from report of previous study conducted in 2013 in the project area)</th>
<th>WHO Limit</th>
<th>FMEn Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean</td>
<td>Range</td>
<td>Mean</td>
</tr>
<tr>
<td>pH</td>
<td>6.66 - 7.68</td>
<td>6.99</td>
<td>7.1 - 7.91</td>
<td>7.44</td>
</tr>
<tr>
<td>Conductivity, µS/cm</td>
<td>183.70 - 530.00</td>
<td>389.42</td>
<td>28.00 - 110.50</td>
<td>75.17</td>
</tr>
<tr>
<td>Turbidity (mg/l)</td>
<td>0.68 - 1.64</td>
<td>1.01</td>
<td>Trace</td>
<td>NS</td>
</tr>
<tr>
<td>Hardness, mg/l</td>
<td>86.74 - 110.65</td>
<td>101.11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>29.20 - 32.20</td>
<td>30.53</td>
<td>26.50 - 31.60</td>
<td>29.2</td>
</tr>
<tr>
<td>Total Dissolved Solids, mg/l</td>
<td>93.70 - 264.00</td>
<td>193.93</td>
<td>48.00 - 99.00</td>
<td>66.67</td>
</tr>
<tr>
<td>Salinity, ppt</td>
<td>0.07 - 0.31</td>
<td>0.18</td>
<td>0.00 - 0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>DO, mg/l</td>
<td>4.50 - 4.97</td>
<td>4.77</td>
<td>2.10 - 2.90</td>
<td>2.61</td>
</tr>
<tr>
<td>COD, mg/l</td>
<td>64.00 - 128.00</td>
<td>96</td>
<td>9.13 - 12.22</td>
<td>12.22</td>
</tr>
<tr>
<td>BOD, mg/l</td>
<td>1.34 - 2.02</td>
<td>1.73</td>
<td>9.13 - 12.22</td>
<td>2.69</td>
</tr>
<tr>
<td>Total Suspended Solids, mg/l</td>
<td>0.68 - 2.12</td>
<td>1.45</td>
<td>1.20 - 5.63</td>
<td>NS</td>
</tr>
<tr>
<td>Nitrate, mg/l</td>
<td>2.00 - 3.00</td>
<td>2.50</td>
<td>1.2 - 13.2</td>
<td>13.2</td>
</tr>
<tr>
<td>Sulphate, mg/l</td>
<td>15.00 - 30.00</td>
<td>21.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phosphate, mg/l</td>
<td>3.00 - 7.00</td>
<td>4.5</td>
<td>0.7 - 2.54</td>
<td>1.31</td>
</tr>
<tr>
<td>Potassium, mg/l</td>
<td>3.60 - 4.70</td>
<td>4.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oil and Grease, mg/l</td>
<td><0.001</td>
<td>ND</td>
<td>ND</td>
<td>NS</td>
</tr>
<tr>
<td>Lead, mg/l</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NS</td>
</tr>
<tr>
<td>Copper, mg/l</td>
<td>0.01 - 0.11</td>
<td>0.0625</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>Cadmium (mg/l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chromium (mg/l)</td>
<td>-</td>
<td>-</td>
<td>12.13 - 13.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: *EnvAccord Wet Season Field Survey, October 2014; **EIA of 20 MW Photovoltaic Solar Power Project at Kankia
NS= Not Specified ND= Not Detected

In the wet season, the pH of the groundwater samples ranged from 6.66 to 7.68 (very slightly acidic to slightly alkaline). The pH falls within the WHO and FMEnv limits of 6.5 - 9.2 and 6.5 - 8.5 respectively for drinking water. Ambient groundwater temperature values ranged between 29.2 °C and 30.9 °C, which fall...
within the FMEnv recommended limit of <40 °C for potable water. The Electrical conductivity of the groundwater samples ranged from 183.70 to 530.00 µS/cm, below the WHO limit of 1000 µS/cm. The Total Dissolved Solids in the groundwater samples ranged between 93.7 mg/l and 264.00 mg/l which fall below the WHO and FMEnv limits of 500ppm for potable water. Salinity of the groundwater samples was very low indicating freshwater environment. The values ranged from 0.07 ppt to 0.13 ppt.

The Biological Oxygen Demand (BOD) in the groundwater samples ranged from 1.34 mg/l to 2.02 mg/l while the Chemical Oxygen Demand (COD) ranged from 64.00 to 128.00 mg/l. The BOD values are slightly above the FMEnv limit of 0.0 mg/l for BOD in drinking water. This may be attributed to human and animal waste contamination. Dissolved Oxygen content of the groundwater samples ranged between 4.50 mg/l and 4.97 mg/l, below the FMEnv limit of 7.5 mg/l for potable water.

Heavy metals in the groundwater samples were either recorded in low concentrations or below the detection limits of Atomic Absorption Spectrophotometer (AAS) used for analysis. The concentrations of Oil & Grease in the groundwater samples were less than 0.001 mg/l.

For the microbial properties, the population of total heterotrophic bacteria (THB) count recorded in the groundwater samples ranged from 1.380×10^2 cfu/ml to 2.270×10^2 cfu/ml while total heterotrophic fungi population occurred between 3.0×10 cfu/ml and 11.0×10 cfu/ml. The micro-organisms in the ground water were probably introduced from the soil within the area since microorganisms are important components of soil. The results of microbial analysis of the groundwater samples are summarized in Table 4.13 below. Detailed results are presented in Appendix 6.

Table 4.13: Descriptive summary of the Microbiological Content of water Samples across the study area

<table>
<thead>
<tr>
<th>Parameter/Unit</th>
<th>Wet season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Total Heterotrophic Bacteria $\times 10^2$ cfu/ml</td>
<td>1.38 - 2.27</td>
</tr>
<tr>
<td>Total Heterotrophic Fungi $\times 10^2$ cfu/ml</td>
<td>3.00 - 11.00</td>
</tr>
<tr>
<td>Total Coliforms</td>
<td>0.00 - 1.40</td>
</tr>
<tr>
<td>Total Hydrocarbon Utilizing Bacteria cfu/ml</td>
<td>ND</td>
</tr>
<tr>
<td>Total Hydrocarbon Utilizing Fungi cfu/ml</td>
<td>ND</td>
</tr>
</tbody>
</table>

Source: EnvAccord Wet Season Field Survey, October 2014 ND= Not Detected
In the dry season, the pH values reported in groundwater samples from the Project area ranged from 7.1 to 7.91 (neutral to slightly alkaline). The pH values were within the permissible limit recommended by FMEnv and WHO for potable water. Electrical conductivity ranged from 28.0 to 110.5 µS/cm, below the WHO limit of 1000 µS/cm. TDS ranged from 48.0 to 99.0 mg/l, below the FMEnv limit of 500 mg/l for drinking water. No heavy metal or hydrocarbon contaminations were reported in the groundwater samples.

4.4.6 Habitat and Terrestrial Flora
4.4.6.1 Introduction
This section presents the terrestrial flora characteristics of the Project site and the surrounding environment. Plants contribute greatly to human welfare, and environmental sustainability. In addition they also provide other benefits such as, holding valuable information about a site’s environmental conditions. The occurrence, relative abundance, physiology, and tolerance of certain plants show the prevailing environmental conditions of an area.

A vegetation survey was undertaken to be able to describe and document the baseline vegetation characteristics of the study area. The vegetation assessment was carried out at nine (9) sampling locations within and around the Project site using belt transect method (Figure 4.14). Interviews were also held with officials of the Department of Agriculture, Kankia LGA as part of the assessment.

Flora specimens were identified in the field (in situ) and in the herbarium (ex situ) using appropriate manuals and monographs. Photographs were taken at the sampling points and adjoining areas to record relevant plant and animal species, habitat characteristics and other features.

In addition, the ecological status of the species encountered was evaluated and classified appropriately according to the following threat categories (IUCN, November 2014.3) as may be applicable: a) Extinct, b) Extinct in the Wild, c) Critically Endangered, d) Endangered, e) Vulnerable, f) Near Threatened, g) Least Concern, h) Data Deficient, i) Not Evaluated.

The results of the vegetation assessment are presented as follows:
- Habitat characterization
- Plant Species Distribution
- Physiognomy, Floristic composition, and Biodiversity assessment
- Inventory of economic plants
- Protected Areas
Figure 4.14: Vegetation sampling locations within and around the Project Site
4.4.6.2 Habitat Characterization

The study area lies within the Sudan Savannah vegetation belt of Nigeria in West Africa. By virtue of this, it falls within the tropical continental vegetation belt of Africa which is known to have a distinct ecological landscape consisting of semi-arid areas with scattered trees, shrubs and grass vegetation.

The primary ecosystem within the project site was found to be characterized by open savannah vegetation with shrubs, grasses and herbs which appear green in the wet season and pale brown and withered in the dry season. Only scattered trees (less than 10 in number) are present within the Project site. The height of the trees ranged from approximately 4 to 9 m. The vegetation of the Project site is mainly regarded as shrub-grazing land. No farmlands or wetland are present on site. The vegetation of the project site was noted to have been largely altered by human interference.

The wider study area can be generally characterized as a modified habitat in line with the IFC Performance Standard 6 - Biodiversity Conservation and Sustainable Management of Living Natural Resources- which defines modified habitats as “areas that may contain a large proportion of plant and/or animal species of non-native origin, and/or where human activity has substantially modified an area’s primary ecological functions and species composition. Modified habitats may include areas managed for agriculture, forest plantations, reclaimed coastal zones, and reclaimed wetlands”.

The habitat types identified in the wider study area (Figure 4.15) include the following:

- Grazing Land
- Cultivated areas (farmland)
- Wetland

These are further described below:

Grazing Land

The vegetation in the grazing land areas is dominated by herbaceous species. The diversity of herbaceous species is higher during the wet season, while diversity and abundance were greatly reduced during the dry season. The plant species that dominate the grazing areas are *Combretum micrathum* and *Cassia obtusifolia*. Plates 4.5 and 4.6 show the photographs of the dominant vegetation type found within the Project site and the grazing activities in the area.

As noted during the baseline field survey, the livestock grazing is mostly free ranging although some pastoral farmers from the neighbouring communities such
as Kauyan Maina and Kanfin Dagi situated over 2km from the Project site occasionally lead livestock, mostly cattle, to the site for grazing.

Plate 4.5: Dominant vegetation type found within the Project Site
Plate 4.6: A; Grazing activities observed within the study area B; Grazing land dominated by *Combretum micrathum* (c) and *Cassia obtusifolia* (D)

Cultivated Areas (Farmland)

Areas that have been used for agriculture are found within the study area but outside the Project site. These areas are largely devoid of natural trees and shrubs due to clearing of the land, and planting with agricultural crops. Crops usually planted in the area include sorghum, millet, rice, and maize. As at the time of the additional site visit conducted in March 2015, there were no farmlands on the Project site as well as its immediate surrounding up to about 200 m radius from the site boundary.

A photograph of one of the farmlands noted in the wider study area is shown in Plate 4.7 below.
Plate 4.7: Photograph of a farmland in the study area (about 800 m from the Project site)

Wetland
Wetlands ecosystems encountered in the wider study area were mostly observed to be as a result of human activities such as clay excavation. Plate 4.8 shows the wetland species noted in the area.

Plate 4.8: Wetland Species; A) *Paspalum virginatum*, B) *Nypheae lotus*
Figure 4.15: Map of habitat types noted in the study area
Table 4.14 summarizes the habitat description noted at each of the locations sampled as well as the common plant species recorded.

Table 4.14: Floristic Composition and Habitat Description

<table>
<thead>
<tr>
<th>Sample Locations</th>
<th>GPS Co-ordinates</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>*PASL E1</td>
<td>7.818269, 12.559389</td>
<td>Grazing land dominated by Cassia occidentalis, Pennisetum glaucum and Acacia nilotica and Acacia nilotica</td>
</tr>
<tr>
<td>PASL E2</td>
<td>7.807894, 12.56594</td>
<td>Farmland dominated with plantations of Lycopersicon esculentum, Glycine max, Phaseolus vulgaris, Pennisetum glaucum and Capsicum sp.</td>
</tr>
<tr>
<td>*PASL E3</td>
<td>7.816454, 12.564671</td>
<td>Grazing land dominated by Cassia sieberiana and Combretum micrathum</td>
</tr>
<tr>
<td>PASL E4</td>
<td>7.841816, 12.587825</td>
<td>Grazing land dominated by Combretum micrathum, Cassia occidentalis and Balanites aegyptiaca</td>
</tr>
<tr>
<td>PASL E5</td>
<td>7.787525, 12.527971</td>
<td>Abandoned farmland dominated by Acacia nilotica, Sorghum bicolor and Cassia occidentalis</td>
</tr>
<tr>
<td>PASL E6</td>
<td>7.807477, 12.555423</td>
<td>Grazing land dominated by Cassia occidentalis and Acacia nilotica</td>
</tr>
<tr>
<td>PASL E7</td>
<td>7.823006, 12.574519</td>
<td>Grazing land dominated by Cassia sieberiana and Combretum micrathum, Cassia occidentalis</td>
</tr>
<tr>
<td>PASL E8</td>
<td>7.781431, 12.605118</td>
<td>Farmland dominated by Sorghum bicolor, Cassia occidentalis, Azadiracta indica and Piliostigma reticulatum</td>
</tr>
<tr>
<td>*PASL E9</td>
<td>7.821423, 12.562912</td>
<td>Grazing land dominated by Acacia nilotica and Combretum micrathum, Cassia occidentalis</td>
</tr>
</tbody>
</table>

Source: EnvAccord Wet Season Field Survey, October 2014 *Within the project site*

4.4.6.3 Plant Species Distribution

The study area recorded a variety of plant species. Abundant species noted to be widely distributed within and around the study area include; *Calopogonum mucunoides*, *Sida acuta*, *Moringa oleifera* *Cassia occidentalis*, *Pennisetum glaucum*, *Acacia nilotica*, *Combretum micrathum*, *Cassia sieberiana* and *Azadiracta indica*.

Tree species observed outside the project site belong mostly to the families of Fabaceae, Poaceae, Euphorbiaceae and Combretaceae.

Table 4.15 shows the distribution of plant species encountered in the study area.
Table 4.15: Distribution of Plant Species across the Sampling Locations

<table>
<thead>
<tr>
<th>Plant species encountered</th>
<th>Family names</th>
<th>*E1</th>
<th>*E2</th>
<th>*E3</th>
<th>*E4</th>
<th>*E5</th>
<th>*E6</th>
<th>*E7</th>
<th>*E8</th>
<th>*E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia nilotica</td>
<td>Fabaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acrosticum aureum</td>
<td>Pteridaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aleo buettneri</td>
<td>Liliaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amaranthus viridis</td>
<td>Amaranthaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anacardium occidentale</td>
<td>Anacardaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anogeissus leiocarpa</td>
<td>Combretaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>Fabaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azadiracta indica</td>
<td>Meliaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Balanites aegyptiaca</td>
<td>Zygophyllaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Borassus aethiopum</td>
<td>Areceaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Bridelia farruginea</td>
<td>Euphorbiaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Calopogonium mucunoides</td>
<td>Fabaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Calotropis procera</td>
<td>Asclepiadaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Capsicum sp.</td>
<td>Solanaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cassia obtusifolia</td>
<td>Fabaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cassia occidentalis</td>
<td>Fabaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cassia sieberiana</td>
<td>Fabaceae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceiba pentandra</td>
<td>Bombacaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Celosia argentea</td>
<td>Amaranthaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Combretum micranthum</td>
<td>Combretaceae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Commiphora africana</td>
<td>Burseraceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Corchorous olitoriu</td>
<td>Tiliaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Delonix regia</td>
<td>Fabaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>* Dichrostachys cinerea*</td>
<td>Fabaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>Myrtaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euphoria hirta</td>
<td>Euphorbiaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Faidherbia albida</td>
<td>Fabaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycine max</td>
<td>Fabaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>Verbenaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Guiera sensgalensis</td>
<td>Combretaceae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Plant species encountered</td>
<td>Family names</td>
<td>*E1</td>
<td>E2</td>
<td>*E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>*E9</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Hyphaene thebaica</td>
<td>Arecaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ipomoea batatas</td>
<td>Convolvulaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jatropha curcas</td>
<td>Euphorbiaceae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lawsonia inermis</td>
<td>Lythraceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Onagraceae</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>Solanaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Anacardiaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mimosa pudica</td>
<td>Fabaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Monochoria vaginalis</td>
<td>Onagraceae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Moringa oleifera</td>
<td>Moringaceae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Nyphaea lotus</td>
<td>Nymphaeaceae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>Oleaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>Poaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parkia biglobosa</td>
<td>Fabaceae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paspalum virginatum</td>
<td>Poaceae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pennisetum glaucum</td>
<td>Poaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Fabaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Piliostigma reticulatum</td>
<td>Fabaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>Myrtaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sesamum indicum</td>
<td>Pedaliaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sida acuta</td>
<td>Malvaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sorghum bicolor</td>
<td>Poaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spigelia anthelmia</td>
<td>Loganiaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitellaria paradoxa</td>
<td>Sapotaceae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Poaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ziziphus mauritiana</td>
<td>Rhamnaceae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

KEY: Absent (-), Presence (+) *Within the Project Site

Source: EnvAccord Wet Season Field Survey, October 2014

Photographs of some of the flora species recorded in the study area are shown in Plates 4.9 and 4.10.
Plate 4.9: A; Cassia occidentalis, B; Lawsonia inermis, C; Acacia nilotica, D; Jatropha curcas E; Vitellaria paradoxa
4.4.6.4 Physiognomy, Floristic Composition and Biodiversity Assessment

Ecosystems in Nigeria are naturally endowed with arrays of floristic composition of different plant forms including trees, shrubs, herbs, ferns, climbers and other non-wood forest resources (Olajide, 2003).

Species composition, distribution and structure of the vegetation of the study area as well as the physiognomic view show few trees shrub, herb and grasses. From the study, 56 plants were identified, belonging to 22 families, 54 genera. Plant species in the entire study area of 5km radius from the Project site boundary were observed to occur as herbs, grasses, shrubs, trees, ferns and climbers with a percentage distribution of 32.8%, 8.6%, 10.3%, 39.7% and 1.72% respectively.
It is however important to note that the Project site is specifically dominated by shrubs and herbs. Only scanty trees are present. The tree species noted within the site is mainly *Borassus aethiopum*.

The full list of plant species recorded in the study area is provided in Appendix 6.

In terms of biodiversity assessment, the IUCN (International Union of Conservation of Nature) Red List of Threatened Species ((IUCN, November 2014.3) was employed. The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on plants, fungi and animals that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those plants and animals that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable).

The IUCN Red List also includes information on plants, fungi and animals that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e., are Data Deficient); and on plants, fungi and animals that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e., are Near Threatened).

The plant species encountered in the study area fall under the categories of Vulnerable, Data Deficient, Least Concern and Not Evaluated with a percentage of 2%, 2%, 7% and 89% respectively as shown in Table 4.16. *Vitellaria paradoxa* which falls under IUCN vulnerable category, was encountered only in 1 out of 9 locations sampled (E2). There are no IUCN critically endangered or endangered plant species in the study area. In addition, there are no known protected species within the Project site under the Nigerian legislation.

<table>
<thead>
<tr>
<th>S/N</th>
<th>IUCN Category</th>
<th>No of Plant Species</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vulnerable</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Data Deficient</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Least Concern</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Not Evaluated</td>
<td>50</td>
<td>89</td>
</tr>
</tbody>
</table>

Source: EnvAccord Wet Season Field Survey, October 2014

The IUCN status of the plant species encountered in the study area is highlighted in Table 4.17 below.
Table 4.17: Species Biodiversity Status across the Study Area

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Common /local names</th>
<th>Family names</th>
<th>Habits</th>
<th>IUCN status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia nilotica</td>
<td>Gum Arabic Tree</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Acrosticum aureum</td>
<td>Leather Fern</td>
<td>Pteridaceae</td>
<td>Fern</td>
<td>NE</td>
</tr>
<tr>
<td>Aloe</td>
<td></td>
<td>Liliaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Amaranthus viridis</td>
<td>Green Amaranth</td>
<td>Amaranthaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Anacardium occidentale</td>
<td>Cashew</td>
<td>Anacardiaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Anogeissus leiocarpa</td>
<td>African Birch</td>
<td>Combretaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>Groundnut</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Azadiracta indica</td>
<td>Neem Tree</td>
<td>Meliaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Balanites aegyptiaca</td>
<td>Desert Date</td>
<td>Zygophyllaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Borassus aethiopum</td>
<td>African Fan Palm</td>
<td>Arecales</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Bridella farruginea</td>
<td>Kizni (HL)</td>
<td>Euphorbiaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Calopogonium mucunoides</td>
<td>Wild Ground Nut</td>
<td>Fabaceae</td>
<td>Climber</td>
<td>NE</td>
</tr>
<tr>
<td>Capsicum sp.</td>
<td>Pepper</td>
<td>Solanaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Cassia obtusifolia</td>
<td>Tafassa (HL)</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Cassia occidentalis</td>
<td>Tafassa (HL)</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>cassia sieberiana</td>
<td>African Laburnum</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Ceiba petantra</td>
<td>Silk-Cotton</td>
<td>Bombaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Celosia argentea</td>
<td>Jew's Mallow</td>
<td>Tiliaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Combretum micrathum</td>
<td>Geza (HL)</td>
<td>Combretaceae</td>
<td>Shrub</td>
<td>NE</td>
</tr>
<tr>
<td>Commiphora africana</td>
<td>African Myrrh</td>
<td>Burseraceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Corchorus olitorius</td>
<td>Apple</td>
<td>Verbenaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Delonix regia</td>
<td>Flamboyant Tree</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>LC</td>
</tr>
<tr>
<td>Dichroa mungana</td>
<td>Sickle Bush</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>River Red Gum</td>
<td>Myrtaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Euphorbia hirta</td>
<td>Asthma Plant</td>
<td>Euphorbiaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Faidherbia albida</td>
<td>Apple-Ring Acacia</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Glycine max</td>
<td>Soy-Bean</td>
<td>Fabaceae</td>
<td>Climber</td>
<td>NE</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>Gmelina</td>
<td>Verbenaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Guiera senegalensis</td>
<td>Moshi Medicine</td>
<td>Combretaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Hyphaene thebaica</td>
<td>Ipomoea Batatas</td>
<td>Arecales</td>
<td>shrub</td>
<td>NE</td>
</tr>
<tr>
<td>Ipomoea batatas</td>
<td>Sweet Potato</td>
<td>Convolvulaceae</td>
<td>Climber</td>
<td>NE</td>
</tr>
<tr>
<td>Jatropha curcas</td>
<td>Physic Nut</td>
<td>Euphorbiaceae</td>
<td>Shrub</td>
<td>NE</td>
</tr>
<tr>
<td>Lawsonia inermis</td>
<td>Henna Plant</td>
<td>Lythraceae</td>
<td>Shrub</td>
<td>NE</td>
</tr>
<tr>
<td>Ludwigia</td>
<td>Onagraceae</td>
<td>Herb</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>Tomatoes</td>
<td>Solanaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Mango</td>
<td>Anacardiaceae</td>
<td>Tree</td>
<td>DD</td>
</tr>
<tr>
<td>Mimosa pudica</td>
<td>Sensitive Plant</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>LC</td>
</tr>
<tr>
<td>Monochoria vaginalis</td>
<td>Oval-Leaved Pondweed</td>
<td></td>
<td>Herb</td>
<td>LC</td>
</tr>
<tr>
<td>Moringa oleifera</td>
<td>Moringa</td>
<td>Moringaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Nyphaea lotus</td>
<td>Water-Lily</td>
<td>Nymphaeaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>Olive Tree</td>
<td>Oleaceae</td>
<td>tree</td>
<td>NE</td>
</tr>
<tr>
<td>Orzya sativa</td>
<td>Rice</td>
<td>Poaceae</td>
<td>Grass</td>
<td>NE</td>
</tr>
<tr>
<td>Parkia biglobosa</td>
<td>Locust Beans</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Paspalum virginatum</td>
<td></td>
<td>Poaceae</td>
<td>Grass</td>
<td>NE</td>
</tr>
<tr>
<td>Pennisetum glaucum</td>
<td>Millet</td>
<td>Poaceae</td>
<td>Grass</td>
<td>NE</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Beans</td>
<td>Fabaceae</td>
<td>Climber</td>
<td>NE</td>
</tr>
<tr>
<td>Piliostigma reticulatum</td>
<td>Kalga (HL)</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>NE</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>Guava</td>
<td>Myrtaceae</td>
<td>Shrub</td>
<td>NE</td>
</tr>
<tr>
<td>Sesamum indicum</td>
<td>Oriental Sesame</td>
<td>Pedaliaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
<tr>
<td>Sida acuta</td>
<td>Brown Weed</td>
<td>Malvaceae</td>
<td>Herb</td>
<td>NE</td>
</tr>
</tbody>
</table>
Table 4.18: Economic Importance of Flora Species Encountered

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Common names</th>
<th>Family names</th>
<th>Habits</th>
<th>Economic importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia nilotica</td>
<td>Gum Arabic Tree</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>Forage, Gum</td>
</tr>
<tr>
<td>Acrosticum aureum</td>
<td>Leather Fern</td>
<td>Pteridaceae</td>
<td>Fern</td>
<td>Medicine, Forage</td>
</tr>
<tr>
<td>Aloe buettneri</td>
<td>Aloe</td>
<td>Liliaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Amaranthus viridis</td>
<td>Green Amaranth</td>
<td>Amaranthaceae</td>
<td>Herb</td>
<td>Vegetable</td>
</tr>
<tr>
<td>Anacardium occidentale</td>
<td>Cashew</td>
<td>Anacardaceae</td>
<td>Tree</td>
<td>Fruit</td>
</tr>
<tr>
<td>Anogeissus leiocarpa</td>
<td>African Birch</td>
<td>Combretaceae</td>
<td>Tree</td>
<td>Fuelwood</td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>Groundnut</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>Food</td>
</tr>
<tr>
<td>Azadiracta indica</td>
<td>Neem Tree</td>
<td>Meliaceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
<tr>
<td>Balanites aegyptiaca</td>
<td>Desert Date</td>
<td>Zygophyllaceae</td>
<td>Tree</td>
<td>Food, medicine</td>
</tr>
<tr>
<td>Borassus aethiopum</td>
<td>African Fan Palm</td>
<td>Areaceae</td>
<td>Tree</td>
<td>Food, Medicine</td>
</tr>
<tr>
<td>Bridella farruginea</td>
<td>Kizni (HL)</td>
<td>Euphorbiaceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
<tr>
<td>Calopogonium mucunooides</td>
<td>Wild Ground Nut</td>
<td>Fabaceae</td>
<td>Climber</td>
<td>Forage</td>
</tr>
<tr>
<td>Calotropis procera</td>
<td>Sodom Apple</td>
<td>Asclepiadaceae</td>
<td>Shrub</td>
<td>Medicine</td>
</tr>
<tr>
<td>Capsicum sp.</td>
<td>Pepper</td>
<td>Solanaceae</td>
<td>Herb</td>
<td>Spice</td>
</tr>
<tr>
<td>Cassia obtusifolia</td>
<td>Tafassa(HL)</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Cassia occidentalis</td>
<td>Tafassa(HL)</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Cassia sieberiana</td>
<td>African Laburnum</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>Timber</td>
</tr>
<tr>
<td>Ceiba petantra</td>
<td>African Laburnum</td>
<td>Bombacaceae</td>
<td>Tree</td>
<td>Timber</td>
</tr>
</tbody>
</table>
Plant species

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Common names</th>
<th>Family names</th>
<th>Habits</th>
<th>Economic importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celosia argentea</td>
<td>Plumed Cockscomb</td>
<td>Amaranthaceae</td>
<td>Herb</td>
<td>Vegetable</td>
</tr>
<tr>
<td>Combretum micrathum</td>
<td>Geza (HL)</td>
<td>Combretaceae</td>
<td>Shrub</td>
<td>Medicine</td>
</tr>
<tr>
<td>Commiphora africana</td>
<td>African Myrrh</td>
<td>Burseraceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
<tr>
<td>Corchorous olitorius</td>
<td>Jew’s Mallow</td>
<td>Tiliaceae</td>
<td>Herb</td>
<td>Vegetable</td>
</tr>
<tr>
<td>Delonix regia</td>
<td>Flamboyant Tree</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>Firewood, Medicine</td>
</tr>
<tr>
<td>Dichrotauchya cinerea</td>
<td>Sickle Bush</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>Firewood</td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>River Red Gum</td>
<td>Myrtaceae</td>
<td>Tree</td>
<td>Firewood</td>
</tr>
<tr>
<td>Euphobia hirta</td>
<td>Asthma Plant</td>
<td>Euphorbiaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Faidherbia albida</td>
<td>Apple-Ring Acacia</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
<tr>
<td>Glycine max</td>
<td>Soy-Bean</td>
<td>Fabaceae</td>
<td>Climber</td>
<td>Medicine, Food</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>Gmelina</td>
<td>Verbenaceae</td>
<td>Tree</td>
<td>Medicine, Timber</td>
</tr>
<tr>
<td>Guiera sensgalensis</td>
<td>Moshi Medicine</td>
<td>Combretaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Hyphaene thebaica</td>
<td>Ipomoea Batatas</td>
<td>Areaceae</td>
<td>Shrub</td>
<td>Medicine</td>
</tr>
<tr>
<td>Ipomoea batatas</td>
<td>Sweet Potato</td>
<td>Convolvulaceae</td>
<td>Climber</td>
<td>Food</td>
</tr>
<tr>
<td>Jatropha curcas</td>
<td>Physic Nut</td>
<td>Euphorbiaceae</td>
<td>Shrub</td>
<td>Medicine, Biofuel</td>
</tr>
<tr>
<td>Lawsonia inermis</td>
<td>Henna Plant</td>
<td>Lythraceae</td>
<td>Shrub</td>
<td>Medicine</td>
</tr>
<tr>
<td>Ludwigia</td>
<td>Onagraceae</td>
<td>Herb</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>Tomatoes</td>
<td>Solanaceae</td>
<td>Herb</td>
<td>Spices</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Mango</td>
<td>Anacardiaceae</td>
<td>Tree</td>
<td>Food, Medicine</td>
</tr>
<tr>
<td>Mimosa pudica</td>
<td>Sensitive Plant</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Monochoria vaginalis</td>
<td>Oval-Leafed Pondweed</td>
<td>Fabaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Moringa oleifera</td>
<td>Moringa</td>
<td>Moringaceae</td>
<td>Tree</td>
<td>Medicine, Food</td>
</tr>
<tr>
<td>Nyphaea lotus</td>
<td>Water-Lily</td>
<td>Nymphaeaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>Olive Tree</td>
<td>Oleaceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>Rice</td>
<td>Poaceae</td>
<td>Grass</td>
<td>Food</td>
</tr>
<tr>
<td>Parkia biglobosa</td>
<td>Locust Beans</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>Spice</td>
</tr>
<tr>
<td>Paspalum virginatum</td>
<td>Poaceae</td>
<td>Grass</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Pennisetum glaucum</td>
<td>Millet</td>
<td>Poaceae</td>
<td>Grass</td>
<td>Medicine</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Beans</td>
<td>Fabaceae</td>
<td>Climber</td>
<td>Food</td>
</tr>
<tr>
<td>Pilostigma reticulatum</td>
<td>Kalga (HL)</td>
<td>Fabaceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>Guava</td>
<td>Myrtaceae</td>
<td>Shrub</td>
<td>Food</td>
</tr>
<tr>
<td>Sesamum Indicum</td>
<td>Oriental Sesame</td>
<td>Pedaliaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Sida acuta</td>
<td>BrownWeed</td>
<td>Malvaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Sorghum bicolor</td>
<td>Guinea Corn</td>
<td>Poaceae</td>
<td>Grass</td>
<td>Food</td>
</tr>
<tr>
<td>Spigelia anthelmia</td>
<td>Worm Weed</td>
<td>Loganiaceae</td>
<td>Herb</td>
<td>Medicine</td>
</tr>
<tr>
<td>Vitellaria paradoxa</td>
<td>Shea Tree</td>
<td>Sapotaceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Maize</td>
<td>Poaceae</td>
<td>Grass</td>
<td>Food, Fodder</td>
</tr>
<tr>
<td>Ziziphus mauritiana</td>
<td>Indian Jujube</td>
<td>Rhamnaceae</td>
<td>Tree</td>
<td>Medicine</td>
</tr>
</tbody>
</table>

Source: EnvAccord Wet Season Field Survey, October 2014

4.4.6.6 Protected Areas

IUCN defined protected areas as Areas of land and/or sea dedicated to the protection and maintenance of biological diversity, and of natural and associated cultural resources, and managed through legal or other effective means (IUCN, 1994).
There are no protected areas within the entire 120 ha of the Project site. However, in the wider environment of the study area (within 5 km radius), some areas are designated as plantation by the Katsina State Government and Kankia LGA. Under the laws, the areas should not be encroached or tampered with without approvals from the relevant authority. The identified plantations noted in the wider study area of the proposed Project are provided in Table 4.19 and Figure 4.16.

Table 4.19: List of Plantations noted in the wider study area of the Project site

<table>
<thead>
<tr>
<th>S/N</th>
<th>Plantation Areas</th>
<th>GPS Co-ordinates</th>
<th>Remarks</th>
<th>Dominant Species Encountered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Nasarawa Plantation</td>
<td>7.8124, 12.50420</td>
<td>Occupies about 50-70 hectares of land. It is located along Kankia road, Kastina State. It is approximately 5 km from the Project site.</td>
<td>Acacia nilotica, Cassia occidentalis, Azadiracta indica, Balanites aegyptiaca, Parkia biglobosa, Borassus aethiopum, Calotropis procera, Eucalyptus camaldulensis, Phaseolus vulgaris.</td>
</tr>
<tr>
<td>2.</td>
<td>Katsina Green Initiative Programme (Road Side tree plantings (afforestation program) for preventing desertification)</td>
<td>7.82256, 12.56906</td>
<td>It is 12 m by 250 m, located along IBB Way. It is approximately 500 m from the Project site.</td>
<td>Gmelina arborea, Olea europaea, Delonix regia.</td>
</tr>
<tr>
<td>3.</td>
<td>Department of Forestry, Wood Fuel Plantation.</td>
<td>7.81764, 12.53189</td>
<td>Occupies about 10 hectares of land. It is located at Kukar, Kwaidae. It is approximately 3 km from the Project site.</td>
<td>Cassia occidentalis, Azadiracta indica, Eucalyptus camaldulensis, Combretum micrathum, Piliostigma reticulatum.</td>
</tr>
</tbody>
</table>

Source: EnvAccord Wet Season Field Survey, October 2014

In addition, there are no culturally significant sites or heritage assets within the Project site and the immediate surrounding environment based on the information gathered from the local communities and Katsina State Ministry of Culture and Tourism, chance find survey, and desktop review of existing reports related to the project area.
Figure 4.16: Map of existing plantations noted in the study area
4.4.7 Terrestrial Fauna

4.4.7.1 Methodology
A combination of sampling techniques were used for the fauna assessment of the study area and included identifying major ecosystem types to identify associated fauna, collecting and preserving representative fauna specimens (e.g. insects), analysis of tracks, faecal samples, nest type, feeding site, bird noise, shell types, interviews with local communities and review of relevant literature.

4.4.7.2 Findings
The findings of the fauna assessment are presented as follows:

- **The Project Site**
The proposed project site is situated on a 120ha land area characterised by open savannah vegetation consisting of shrubs, grasses and a few trees. The fauna species found within the project site at the time of survey include invertebrates such as annelids (earthworms), arthropods (ants, termites, and beetles) and vertebrates such as reptiles (lizards, skink), birds (sparrow, pigeons and waxbill) and mammals such as (cattle, sheep, goat and camel). No spawning area for frogs or other aquatic organisms was encountered within the Project site. Plates 4.11 and 4.12 below show some fauna species encountered at the project site during the survey.

It is important to note that the mammals such as sheep, goat and camel noted on the site move freely from one location to another. They do not permanently reside on the site. They are occasionally moved to the site due to the presence of shrubs and herbs for grazing.

Plate 4.11: (A). Black Ants colony (B). Termite’s mound belonging to colony of *Microteres species*
Plate 4.12: Livestock grazing within the proposed project site (A). Goat *Capra species* (B) Cattle *Bos bos*

- **The Transmission Corridor**

Results of fauna assessment carried out along the proposed transmission corridor indicate low fauna diversity. This could be attributed to the residential nature of the area (the proposed transmission route would pass through a land area belonging to two communities; Gachi and Daourawa). The dominant fauna species of the area include domestic animals (cattle, sheep, goats, camel, and dogs). Other animal species noted in the area include insects, lizard and birds. The transmission line route is mostly dominated by shrubs and grasses with scanty trees.

Plate 4.13: Fauna species found along the proposed transmission line (A). Camel *camelus species* (B) Goat *Capra species*

- **Immediate Surroundings of the Project Site**

The fauna species identified in the immediate surroundings of the project site (1km, buffer area) include; invertebrates such as (insects, arachnids and myriapods) and vertebrates such as (amphibian, reptiles and mammals). The Kankia dam which is situated close to the proposed project site (approximately 200 m) used to provide habitat for aquatic vertebrates such as frog and small fishes, before it was abandoned for repair. The aquatic vertebrates around the
dam include fish species such as (Alestes *Alestes nurse*, and Tilapia *Tilapia spp*) and Amphibians such as (Toads *Bufo spp* and Frogs *Rana spp*).

Plates 4.14 to 4.15 show some fauna species encountered in the immediate surrounding (1 km buffer area) of the project site.

Plate 4.14: (A). Beetle (*Stephanocrates spp*) (B). Butterfly species of family Lycaenidae

Plate 4.15: (A). Waxbill (*Estrelidae spp*) (B) Rock Pigeon (*Columba livia*)

- **Wider Area of Project Influence**

The fauna in the wider environment of the Project's area of influence is characterised by numerous species among which are arthropods (e.g. insects and arachnids), amphibians, reptiles, birds and mammal that are suited to the seasonal weather and the hot-dry conditions. The fauna species identified include:

Invertebrate fauna: Insects, arachnids and myriapods as well as other species such as earthworms *Eudrilus euginae*, and snails *Archachatina marginata* which were found around wet areas during survey. Some insect species of this area are of economic importance, serving as food sources, crop pests and disease vectors of man and animals. These include aphids, grasshoppers, and honey bees.
Vertebrate fauna: Aquatic vertebrae (fish and amphibians) species inhabit the temporary water pools found in the wider area of project influence. Amphibians of this area include the frog *Rana species*, *Xenopus species* and toads *Bufo regularis*.

The reptilian fauna includes lizard (*Agama agama*), Geko (*Hemidactylus species*) chameleon (*Chamaeleo dilepis*) and snakes (*Natrix anoscopis*).

The common bird types include the Francolin *Francolinus spp*, African swiff *Apus affinis*, Eagles *Haliaetus vocifer*, Egrets *Bublcus spp*, and many others i.e. Kites, Sparrows and Wood-pickers. Kankia was found to have high avian abundance and diversity and this could be attributed to the abundance of seed bearing grasses, fruits and insects in the open vegetation of the area.

Plates 4.16 and 4.17 below shows some fauna species encountered in wider area of project influence during the field study.

Plate 4.16: (A). Toad *Bufo species* found in a pond during survey (B). flap-necked chameleon *Chamaeleo dilepis*

Plate 4.17: (A).Waxbill (*Estrelidae spp*) (B). Duck (*Anser anser*)

The mammalian fauna reported in the wider environment of the Project's area of influence include ground squirrel *Xerus erythropus*, rodents *Thryonomis swiderianus* and antelopes *Cepholpus monticola*.
4.4.7.3 Fauna Utilization in Kankia area of Katsina State
Bush meat consumption and trade is a common practice in the study area. Other uses of animal species include hide and skin, plume, and feathers. Livestock farming is common in the study area. The commonly raised animals are: cattle, sheep, goats and domestic fowl. Others include dogs, cats, horses, monkeys and camels.

4.4.7.4 Conservation Status and Threats to Wildlife in the Study Area
Fauna species in the study area are exposed to human induced threats such as increased development activities, agriculture, and hunting.

None of the fauna species recorded in the Project site and the surrounding environment belongs to the IUCN threatened category as indicated in Table 4.20.
Table 4.20: Inventory of fauna species within the Study area and their IUCN Status

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Common name</th>
<th>Local name</th>
<th>Scientific Name</th>
<th>IUCN Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNELIDA</td>
<td>Oligocheata</td>
<td>Lumbriculida</td>
<td></td>
<td>Earthworms</td>
<td>Tanya</td>
<td>Eudrilus eugeniae</td>
<td>NE</td>
</tr>
<tr>
<td>ARTHROPODA</td>
<td>Arachnida</td>
<td>Araneida</td>
<td>Salticida</td>
<td>Spider</td>
<td>Koda</td>
<td>Alfenus chrysophaeus hiratoscirtus torquatus</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta</td>
<td></td>
<td>coleoptera</td>
<td></td>
<td>Beetles</td>
<td>Serikinkaye</td>
<td>Stephanocrates spp</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diptera</td>
<td>Muscida</td>
<td>Housefly</td>
<td>Soro</td>
<td>Musca domestica</td>
<td>NE</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td></td>
<td>Apedae</td>
<td>Hymenoptera</td>
<td>Honey Bees</td>
<td>Zuma</td>
<td>Aphis melifera</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Formicidae</td>
<td>Ants’ mound</td>
<td>Rina/Dila</td>
<td></td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tailor Ants</td>
<td>Tura</td>
<td></td>
<td></td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soldier ants</td>
<td>Tura</td>
<td></td>
<td></td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wasp</td>
<td>Rina</td>
<td></td>
<td>Paracyphononyx spp</td>
<td>NE</td>
</tr>
<tr>
<td>Orthoptera</td>
<td></td>
<td>Pyrgomorphidae</td>
<td></td>
<td>Grasshoppers</td>
<td>Kaya</td>
<td>Zonocerus Variegatus</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gryllidae</td>
<td></td>
<td>African field Cricket</td>
<td>Gryllus bimaculatus</td>
<td></td>
<td>NE</td>
</tr>
<tr>
<td>Mantodea</td>
<td>Mantidae</td>
<td>Praying Mantis</td>
<td></td>
<td></td>
<td></td>
<td>Sphodromantis viridis</td>
<td>NE</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td></td>
<td>Butterflies</td>
<td></td>
<td>Filofilo</td>
<td></td>
<td>Aslauga camerunica</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moth</td>
<td></td>
<td>Filofilo</td>
<td></td>
<td></td>
<td>NE</td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td>Dragonfly</td>
<td></td>
<td>Filofilo</td>
<td></td>
<td>Crocothemis Palpopleura lucia</td>
<td>NE</td>
</tr>
<tr>
<td>Myripoda</td>
<td>Diplopoda</td>
<td>Milipedes</td>
<td></td>
<td>Susa</td>
<td></td>
<td>Tibiomius species Peridontopyge spp</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spirostreptus assiniensis</td>
<td></td>
</tr>
<tr>
<td>Chilopoda</td>
<td></td>
<td>Centipede</td>
<td></td>
<td>Bsariba</td>
<td></td>
<td>Scolopendra spp</td>
<td>NE</td>
</tr>
<tr>
<td>MOLLUSCA</td>
<td></td>
<td></td>
<td></td>
<td>African giant snail</td>
<td></td>
<td>Archachatina marginata</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>freshwater clam</td>
<td>Dodo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylum</td>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Common name</td>
<td>Local name</td>
<td>Scientific Name</td>
<td>IUCN Status</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Pisces</td>
<td></td>
<td></td>
<td>Catfish</td>
<td>Tarabada</td>
<td>Clarias gariepinus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cichlidae</td>
<td>Tilapia</td>
<td>Buku</td>
<td>Tilapia spp</td>
<td>NE</td>
</tr>
<tr>
<td>Amphibia</td>
<td>Anuran</td>
<td></td>
<td></td>
<td>Toad</td>
<td>Quado</td>
<td>Bufo regularis B.ufo maculates</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frogs</td>
<td></td>
<td></td>
<td>Rana galamensis</td>
<td>LC</td>
</tr>
<tr>
<td>Squamata</td>
<td>Agamidae</td>
<td></td>
<td></td>
<td>Agama Lizards</td>
<td>Sari</td>
<td>Agama agama</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chamaeleonidae</td>
<td>Chameleon</td>
<td>Demo</td>
<td>Chamaeleo gracilis</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scincidae</td>
<td>Skinks</td>
<td>Damu</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophida</td>
<td>Culubridae</td>
<td>Green snake</td>
<td>Philothalmnus heterodermus</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elapidae</td>
<td>Black Necked Spitting Cobra</td>
<td>Gamsega</td>
<td>Naja nigricolis</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green Mamba</td>
<td>Sawanmahyi</td>
<td>Sawanmahyi</td>
<td>Dendroaspis jameisoni</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Viperidae</td>
<td>Gaboon viper</td>
<td>Kasa</td>
<td>Bitis gabonica</td>
<td>LC</td>
</tr>
<tr>
<td>Aves</td>
<td>Ciconiiformes</td>
<td></td>
<td>Ardeidae</td>
<td>Heron / Bittern</td>
<td></td>
<td>Ardea spp, Botarus Stellaris</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Egret</td>
<td></td>
<td></td>
<td>Bulbucus spp</td>
<td>LC</td>
</tr>
<tr>
<td>Anseriformes</td>
<td>Anatidae</td>
<td></td>
<td>Duck</td>
<td>Agwagwa</td>
<td></td>
<td>Anas spp</td>
<td>LC</td>
</tr>
<tr>
<td>Falconiformes</td>
<td>Accipitridae</td>
<td></td>
<td>Eagles/Hawk/Kites</td>
<td>Atu</td>
<td></td>
<td>Aviceda cuculoides, Accipiter toussoneli, Circaetus cinereus</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sagittariidae</td>
<td>Buzzard</td>
<td>Sayia</td>
<td>Buteo spp</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kestrel</td>
<td>Hasbiya</td>
<td>Falco spp</td>
<td>LC</td>
</tr>
<tr>
<td>Phylum</td>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Common name</td>
<td>Local name</td>
<td>Scientific Name</td>
<td>IUCN Status</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Galliformes</td>
<td>Phasianidae</td>
<td></td>
<td></td>
<td>Quail/Francolin/Chicken/turkey</td>
<td>Coturnix adansonii, Francolinus spp Gallus gallus, Meleagris spp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turniciformes</td>
<td>Turnix</td>
<td></td>
<td>Turnix spp</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td>Gruiformes</td>
<td>Railidae</td>
<td></td>
<td></td>
<td>Fluftails</td>
<td>Hundu</td>
<td>Sarothrura spp</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crex spp, Porzana spp Aenigmatolimnas marginalis</td>
<td>LC</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Rostratulidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rostratula benghalensis</td>
<td>LC</td>
</tr>
<tr>
<td>Columbiformes</td>
<td>Columbidae</td>
<td></td>
<td></td>
<td>Pigeon/Dove</td>
<td>Hasbiya</td>
<td>Columba spp, Streptopelia spp, Turtur spp, Treron spp</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coucal</td>
<td>LC</td>
</tr>
<tr>
<td>Apodiformes</td>
<td>Apodidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Centropus spp</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Phoeniculidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phoeniculus spp</td>
<td>LC</td>
</tr>
<tr>
<td>Piciformes</td>
<td>Picidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Campethera spp, Dendropicos spp</td>
<td>LC</td>
</tr>
<tr>
<td>Passeriformes</td>
<td>Alaudidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Hirundinidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hirundo spp</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Crovida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crovus</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Ploceidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Passeridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td>Mammalia</td>
<td>Artiodactyla</td>
<td>Bovidae</td>
<td></td>
<td>Cattle</td>
<td>Nama</td>
<td>Bos</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheep</td>
<td></td>
<td></td>
<td>Rago</td>
<td>ovis aries</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goat</td>
<td></td>
<td></td>
<td>Akuya</td>
<td>Capra</td>
<td>LC</td>
</tr>
<tr>
<td>Phylum</td>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Common name</td>
<td>Local name</td>
<td>Scientific Name</td>
<td>IUCN Status</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antelope/duiker</td>
<td></td>
<td>Cepholpus monticola,</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Canidae</td>
<td>Dogs</td>
<td>Kare</td>
<td>Canis Familarae</td>
<td>LC</td>
</tr>
<tr>
<td>Chiroptera</td>
<td></td>
<td></td>
<td></td>
<td>Bats</td>
<td></td>
<td>Zonzoro</td>
<td>LC</td>
</tr>
<tr>
<td>Rodentia</td>
<td>Anomaluridae</td>
<td></td>
<td></td>
<td>Squirrel</td>
<td>Kurege</td>
<td>Idiurus sp Xerus erythropus,</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Thryonomyidae</td>
<td></td>
<td></td>
<td>Grass cutter</td>
<td>Busi</td>
<td>Thryonomis swiderianus</td>
<td>LC</td>
</tr>
</tbody>
</table>

NE: Not evaluated
LC: Least concerned

4.4.8 Landscape and Visual Baseline

This section describes the current landscape and visual characteristics of the project area. A visual assessment was conducted during the baseline survey to characterise the prevailing landscape, and assess the site visibility from various viewpoints around the proposed project site.

The proposed power plant will be sited off the Katsina-Kano Expressway approximately 120 m away in the southern direction. The landscape of the Project site and its immediate environment can generally be described as open with several patches of bare surface and sparse vegetation consisting mostly of grasses, shrubs and few trees. The terrain of the area has a mixed gradient which can be described to vary from flat to gentle slope for most areas with few ridges, trenches, rocky outcrops (none was found within the project site) and manmade excavation sites observed across the terrain.

The project site will be visible from the following areas:

Katsina-Kano Expressway: The project site is particularly visible to commuters along the Katsina-Kano expressway.

Settlements: A section of the residents in the following communities Gandi, Kauyen Dawa, and Fonga will have a slight view of the project site.

Existing Infrastructure and Amenities: Infrastructural facilities and amenities found to be within the view of the proposed project site are:

- Gandi Primary School which is located approximately 50m from the project site in the western direction.
- Government Girls Junior Secondary School (GGJSS) located approximately 650 m east from the project site.
- The Katsina State Metal Works building ‘Gidan Kuza’, which is situated along Katsina-Kano expressway about 150 m from the proposed project site in the northern direction. This factory is currently not operational.
- Other facilities include the Katsina State Water Board building located about 80 m west of the project site. A beekeeping and fish rearing buildings located less than 150 m south of the project site and a tree nursery growing yard located close to the Kankia dam. These facilities are currently not operational.

In general the project site and surrounding is not considered to be of particular scenic aesthetic or recreational significance.
4.4.9 **Baseline Characteristics of the Transmission Line Corridor**

This section provides the general baseline environmental characteristics along the proposed project transmission corridor. This corridor is a 30 m wide strip of land with a length of approximately 4.1 km. This corridor is planned for the construction of a dedicated power line to convey the power generated at the proposed 80 MW power plant to the existing Kankia substation. The selected corridor follows the existing Kano-Katsina transmission line of approximately 30 m width. The transmission corridor is occupied by bare soil, grasses, shrubs, a few subsistence farmlands. A cemetery was noted close to the transmission line connection point to the Kankia substation (approximately 100m from the substation fence line). The proposed transmission corridor route was selected to ensure no physical structures or settlements lay within the proposed power line. A cross-section of the transmission line corridor showing the existing Katsina-Kano 132 kV power line is indicated in Plate 4.18.

![Cross-section of the transmission line corridor](image)

Plate 4.18: A cross section of the proposed transmission line route

4.4.10 **Land Type/Land Cover**

This section discusses the existing land use type/land cover in the study area. A 5-km radius from the proposed Project site was selected for the land type survey. The land-type map was produced from a combination of satellite imagery (Landsat ETM+) and topographical maps covering the study area. The result of the land type survey is presented under the following sub-headings:

- Existing Land Type within the Project Site
- Existing Land Type within the Proposed Transmission corridor
- Existing Land Type in the Wider Study Area (outside the Project site)

 - **Existing Land Type within the Project Site**

The land use composition of the Project site was observed to be of two primary classes namely: Bare soil and Vegetation.
Bare soil: This covers approximately 60 per cent of the total site and includes the drying bed (flood plain), footpaths and unpaved road. The soil varies from fine sandy to clay and lateritic.

Vegetation: This is a general name used for the dense and sparsely spaced shrubs available within the project site. This accounts for approximately 40 % of the Project site.

Other forms of land type such as water body and built up area/settlements were not found within the project site. The existing land type/land cover of the Project site is indicated below in Figure 4.17.
Figure 4.17: Land type map of the Project site
Existing Land Type within the Proposed Transmission corridor
The proposed transmission line is planned to occupy a 30 m wide corridor covering a distance of approximately 4 km to the existing Kankia substation. The proposed transmission line will parallel to the existing 132 kV Kano-Katsina power line. The current land type along the proposed corridor is primarily bare soil, grasses, shrubs, a few subsistence farmlands. A cemetery was noted close to the transmission line connection point to the Kankia substation (approximately 100m from the substation fence line).

Existing Land Type in the Wider Study Area (Outside the Project Site)
The land type characteristic of the wider study area (outside the Project site) is considered to be divided into the following categories (bare soil, vegetation, built up area/settlement, water body) (Figure 4.18). The estimated area covered by each of the land types is presented in Table 4.21 below.

Table 4.21: Existing Land Type/Land cover in the wider Study Area

<table>
<thead>
<tr>
<th>S/N</th>
<th>Land use/ Land cover</th>
<th>Area (Ha)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bare Soil</td>
<td>5931.09</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Vegetation</td>
<td>598.77</td>
<td>8.6</td>
</tr>
<tr>
<td>3</td>
<td>Built up Area</td>
<td>442.17</td>
<td>6.3</td>
</tr>
<tr>
<td>4</td>
<td>Water body</td>
<td>4.14</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6976.17</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field Survey 2014

Built up Area
There are no built up areas within the project site. Communities that fall within 5 km radius of the Project site are Gachi, Galadima, Kauyan Maina, Kafin Dangi and Kankia in Kankia LGA of Katsina State. However, Galadima, Kafin Dangi and Kankia communities have wards/villages that fall within 1km radius of the Project site (considered as the nearest villages to the site). The total area covered by the communities is 442.17 ha which represents 6.3 % of the wider study area. The socio-economic characteristics of the identified communities are further discussed in detail in Section 4.5 of this chapter.

Vegetation
From the land-type analysis, vegetation was observed to cover about 598.77 ha and accounted for approximately 8.60 % of the wider study area. This includes shrubs, trees, and grasses.

Bare Soil
Based on the land-type analysis, the dominant land-cover in the wider study area is bare soil, covering about 5931.09 ha. It accounts for approximately 85 % of the total area under study (5 km radius). This land class is used as agricultural fields,
playing ground, roads and foot paths. The bare soils identified within the project site are the roads, foot paths, space within the sparse shrubs and the dry flooded area.

- **Water Body**
 As stated above, there are no water bodies within the project site. The wider study area has water bodies like dam and temporary pools. The total land mass covered by the water bodies is approximately 4.14 ha. This accounts for about 0.06%.
Figure 4.18: Land type/land cover of the wider study area
4.5 Socio-economic and Health Conditions of the Study Area

4.5.1 Introduction
This section provides information on the socio-economic (including health) conditions of the identified communities in the Project’s area of influence.

Five (5) communities were identified within the Project’s area of influence namely; Gachi, Galadima, Kauyan Maina, Kafin Dangi and Kankia. The distance and orientation of each of these communities to the Project site is as follows:

- Kafin Dangi (3.74 km north east),
- Kauyan Maina (2.98 km east),
- Galadima (1 km south west),
- Gachi (2.32 km south east), and
- Kankia (2.46 km south).

4.5.2 Methodology
The methodologies employed for the socio-economic survey of the Project area include:

- Questionnaire Survey
The household socio-economic survey covered the five (5) communities. However, the sample size per community was based on the estimated population size of each community. In deciding the sample size for this study, the following steps were taken:
 - First, we determined the size of the population with which we are dealing.
 - Determination of the desired precision of results. This is the closeness with which the sample predicts where the true values in the population lie. The difference between the sample and the real population is called the sampling error. For this study, the sampling error was put at ±10%.
 - Determination of the Confidence Level which is expressed as a percentage and represents how often the true percentage of the population who would pick an answer lies within the confidence interval. A 90% confidence level was used.
 - Estimation of the Degree of Variability. This is the degree to which the attributes or concepts being measured are distributed throughout the population. The higher the degree of variability of the distribution of a concept in the target audience, the larger the sample size must be to obtain the same level of precision. The target population for the survey is homogenous which makes it easier to measure variability, and was therefore put at about 10%.
 - Estimation of the Response Rate. Direct contact/observation increases response, therefore the response rate was put at 90%.
Based on this information, the equation for determining the sample size is represented as:

\[n = \frac{N z^2 pq}{E^2 (N - 1) + z^2 pq} \]

Where:
- \(n \) = sample size required
- \(N \) = number of people in the population
- \(p \) = estimated variance in population, as a decimal: (0.10 for 10%)
- \(q \) = 1 - \(p \)
- \(E \) = + - error (i.e. 0.1)
- \(Z \) = based on confidence level: 1.645 for 90% confidence

A total of 250 questionnaires were randomly administered in the communities as follows: 80, 60, 50, 35 and 25 in Kankia, Galadima, Gachi, Kafin Dangi and Kauya Maina respectively. The sample aged groups were 18 years and above. A copy of the questionnaire used during the survey is provided in Appendix 8. Plate 4.19 below shows sample photographs of questionnaire survey in the study area. Amongst others, the questions asked covered age, sex, marital status, monthly income, occupation, housing pattern, health status of respondents, existing health facilities and respondent’s perception of the Project. Responses to the questionnaire administration survey are detailed in Section 4.5.4.

Plate 4.19: Questionnaire administration during field survey

- **Key Informant Interview**

In-depth interviews with community leaders of the identified communities were also carried out to compliment the information obtained from the questionnaire survey and those obtained from existing records. Key informant interviews are qualitative in-depth interactions with persons/residents that have first-hand knowledge about the communities. These include traditional and religious leaders.
Focus Group Discussions (FGDs)
Focus Group Discussions were conducted with groups of adult males, women, farmers, hunters and youths in the communities. The FGDs are further discussed in Section 4.5.5. Details of the community representatives that attended the FGDs are provided in Appendix 8.

Direct/Field Observations
In addition to the questionnaires administration, the survey also involved observational methods wherein notes were taken on the activities noted in the communities. This method is useful for obtaining qualitative data and studying the existing status of the socio-economic environment of the study area.

Literature Sources
Relevant published and unpublished materials relevant to the study area were also consulted. These include the internet, local books and materials specific to the project location.

4.5.3 Community Profile
4.5.3.1 Demography
The total population of Nigeria in 2010 was estimated to be 158.4 million, with a population growth rate of three per cent per year (World Bank, 2010). Approximately 51 per cent of the national population is male, against 49 per cent female. In 2009, Nigeria reported an average life expectancy of 51 years at birth, which was broken down into a life expectancy of 50 years for men and 52 years for women (World Bank, 2010).

Katsina State is approximately 24,971 km² in area. Based on the 2006 national population census, the state stood at a population of approximately 5.8 million people, of which approximately 51 per cent were male and 49 per cent female (Nigeria Bureau of Statistics (NBS), 2010). With a growth rate of 3 %, the estimated population of the state in 2015 is put at approximately 7 million people. The state is mainly populated by Hausa and Fulani people. The minority groups include the Yoruba and Igbo people who migrated from the southern Nigeria.

Kankia LGA of Katsina State is the host local government council for the proposed Project, it occupies an area of 824 km². Based on NBS data, for the year 2006, the population of Kankia L.G.A was 151,395 people which amount to 2.61% of the state’s population. Out of this number 51 per cent were males and 49 per cent females (NBS, 2010).

The estimated population of Kankia LGA in 2015, based on 3 % growth rate, is approximately 192,000 people. The population characteristic of the Kankia LGA, based on the national census conducted in 2006 is presented below in Figure 4.19.
The main language spoken in the study area is Hausa, which is largely the general language of the northern Nigeria. Although, the Fulani people in the LGA speaks both Fulani and Hausa languages.

The population of the sampled communities is predominantly made up of Hausas (95 per cent). The population is also dominated by Muslims. With the exception of Kankia and Galadima communities, the settlement pattern in the study area is largely rural in nature. The estimated population of the five (5) potentially affected communities, based on the information gathered field survey, is as follows:

- Kauyan Maina (5,000),
- Kafin Dangi (10,000),
- Gachi (12,000),
- Galdima (25,000)
- Kankia (28,000).

4.5.3.2 Historical Background and Social Structure

Culture and Ethnicity

The people of Katsina State engage in various forms of festival. Some of the festivals in the state as a whole include:

Durbar: ‘Durbar’ is a local name for “Military Parade” where regiments would showcase their horsemanship in preparedness for war and their loyalty to the emirate, hundreds of years back. Today, the Durbar has become a festival
celebrated in honour of visiting heads of state and at the culmination of the two Muslim festivals: 'Id-el Fitri' and 'Id-el Kabir'. Plates 4.20 and 4.21 show the pictures of Durbar and ‘Sallah’ festival activities.

Plate 4.20: Durbar Festival
Source: Kankia District Head

Plate 4.21: Sallah Festival in the Study Area
Source: Kankia District’s Head

Jaci Festival: This is an annual fishing festival initiated by Muhammadu Dikko, a former emir of Katsina. During the annual gathering, fishermen converge at the emir’s palace from different parts of the Katsina Province. The festival ceased temporarily until it was revived in 2000.
Kallon Kuwa: Kallon Kuwa is a post-harvest annual youth festival. Its name is derived from ‘Kallon Kowa’ in Hausa which means "viewing for all". The festival started around 1935. It is held to express happiness for the successful completion of the cropping season and to celebrate the coming of "Kaka" - a time of prosperity in terms of abundant food and increased economic and social activities. Traditional wrestling, boxing, singing and dancing take place during the festival.

❖ Religion
Islam is the most practiced religion in the sampled communities with a minute population of Christians and traditional worshippers. There are no reports of tension among religious groups in the study area as gathered from residents of the communities during field survey.

❖ Administrative Institution
All the communities have similar traditional systems of administration. Monarchies are a common form of government in Hausa land. The traditional head is usually referred to as the ‘Magajin’, and is supported by a number of village/ward heads.

The Kankia District head reports to the Emir of Katsina State while the heads of other communities in Kankia LGA report to the Kankia District head. Each community is divided into wards and each ward has a leader who reports to the community head.

The name of the ‘Magajin’ of Kankia is Alhaji Abdullah Hassan Sada. Other heads of the communities are: Alhaji Hassan Muhammad for Galadima, Alhaji Sada Bello for Kafin Dangi, Alhaji Ado Sulaiman Gachi for Gachi and Alhaji Surajo Kauyen Maina for Kauyen Maina.

The traditional leaders ensure that peace, unity, religious tolerance, inter-family interaction and security are maintained.

❖ Security and Conflict Resolution
The communities have functional internal arrangements to ensure security of lives and properties and to resolve internal conflicts among their people. Hunters and local ‘vigilantés’ oversee the security function in the communities. In addition, there are Nigerian Police Stations in Kankia and Galadima communities. The conflict resolution mechanism in the communities is organized around the Magajin and his chiefs. Minor disputes can also be adjudicated by village/ward head, while complex cases that cannot be handled through these mechanisms are referred to the Emir of Katsina State.
No inter communities conflict was reported during the field survey, suggesting a peaceful co-existence among the communities in the study area.

Community Migration Status and Patterns

Historical migration into the area is considered to be seasonal. From the qualitative data gathered and census report, including responses from community stakeholders, it was gathered that majority of the residents are native of the study area. However, there is always occupational mobility of local youths to urban centres in other regions of the country during the wet season. The out-migration of the youths is attributed to the fact that agricultural work would have been completed prior to wet season.

4.5.3.3 Economic Activities

The communities in the study area are majorly into farming including arable and livestock farming. The crops usually planted include maize, millet, guinea corn, cowpea and groundnut, most of which are in subsistence and commercial scales.

Trading also dominates the local economy of the area as shown in Plate 4.22.

Plate 4.22: Activities within Kankia market at the time of field survey in October 2014

Residents of the communities also work in the public sector or engage in private businesses. Some are involved in semi-skilled professions such as tailoring, automobile mechanic, and transport service. The small scale industries are mainly private initiatives. These include bakery, sawmilling, metal fabrication and carpentry. Some residents combine economic activities in various forms to complement low production and income levels.
In Kankia community, which is the major community in the Project area, there are several retail and service-based businesses. These include telephone call centres, banks, salons, supermarkets, business centres, private schools and private medical centres, amongst others.

4.5.3.4 Infrastructure and Social Services

Electricity: Power transmission and distribution in the project area are controlled by Transmission Company of Nigeria (TCN) and distribution companies. As a result of the unsteady power supply, the system is supplemented by a large number of petrol and diesel generators owned by individual and commercial businesses. Four out of the five identified communities in the project area are connected to the national grid for power supply. Only Kauyan Maina community is yet to be connected to the national grid. The power supply serves as source of lightning for social and economic activities.

Water Supply: Sources of water in the study area are majorly hand-dug well and boreholes. Due to climatic condition, the study area is lacking adequate water in perennial rivers.

Roads Network: The major road in the study area is the Katsina-Kano Expressway, also called IBB way. There are also direct internal link roads within Galadima and Kankia communities. Most of the road networks that lead to the communities especially Kauyan Maina and Kafin Dangi are untarred. The major means of transport to the two communities are motorcycles while vehicles are mostly used in Kankia community.

Housing and Settlement Pattern: The settlement pattern of the project wider area is sparse to mid-dense populated settlements. Kankia community was originally an administrative and trading centre, a function it has retained. In metropolitan, most of the buildings in the area are bungalows and traditional in nature with hand-made mud, unplastered, thatched/iron roof and old age architectural design. The buildings in Kankia and Galadima are being improved with modern types using cement blocks, plastering, paints, aluminium roofing sheets and modern architectural design. Other communities in the area mostly have old type of buildings; majorly bungalow built with unplastered mud and thatch roofing system, though there are a few modern buildings.

Educational Facilities: The tertiary institutions in Katsina State generally include two federal universities (Umaru Musa Yar’adua University, Katsina and the Federal University, Dutse-ma); a state university (Katsina Islamic University); a state polytechnic (Hassan Usman Katsina Polytechnic, Katsina); and two colleges of education (Isa Kaita College of Education, Dutse-Ma and Yusuf Bala Usman College of Legal Studies, Daura). The state is also home to the College of
Administration in Funtua town; the School of Nursing and Midwifery in Katsina and the Health Auxiliary Training School, Funtua.

The only tertiary institution in the study area in Kankia is School of Health Technology. Each of the sampled communities has a primary school while there are secondary schools in Kankia and Galadima communities. The closest schools to the Project site boundary are Gandi Primary School and Government Girls Junior Secondary School (GGJSS) which are 50m and 660m away respectively. As such the proposed Project has the potential to contribute to academic activities in the institutions as part of its planned Corporate Social Responsibility.

Health Facilities: Health facilities in Katsina State are divided into primary, secondary and tertiary categories. Primary health care facilities include dispensaries and maternity homes which provide first line health care to the population. They are distributed throughout the whole state. Secondary health care includes general hospitals which cater for ailments beyond the competence of the primary health care facilities. Tertiary facilities are referral and research hospitals to cater for ailments beyond the competence of the secondary facilities and for research.

Health facilities are owned and managed by Local, State and Federal governments and the private sector. The Local Governments manage the primary health care facilities; the State Government manages the secondary health facilities while both the State and Federal manage the tertiary health facilities. The private sector generally has facilities that cut across the three categories with primary and secondary facilities being the most common.

The major healthcare facility in the project wider area is the General Hospital in Kankia, in addition to the Primary Health Care centres in other sampled communities.

Waste Disposal and Sanitation: Katsina State Environmental Protection Agency (KATSEPA) is the authority in charge of waste management in the study area. The Agency is responsible for collection, transportation and disposal of household wastes. The KATSEPA workers operate every Saturday of the week. On the whole, the rate of generation from households far exceeds the rate of collection of waste by KATSEPA. There is lack of private sector participation in waste management. The results are that there is the presence of heaps of indisposed refuse. In order to reduce the volume of wastes people usually engage in open burning of the wastes. Some of the wastes are however collected and taken to the farm and used as organic manure.
Tourism and Recreation: Katsina State as a whole is rich in indigenous heritage and important historic landmarks. These include the Gobarau Minaret Katsina, National Museum, Katsina Kusugu Well, and Old Training College, Katsina. None of these ancient tourist centres is located within the study area in Kankia LGA.

4.5.4 Responses to Questionnaire Administration
This sub-section provides the analysis of the socio-demographic information of the respondents which cover areas such as age, gender, education, marital status, monthly income, occupation and social lifestyle.

- Age and Gender of Respondents
The distribution of the respondents according to predetermined age groups is presented in Figure 4.20. The dominant respondents fall between 18 and 30 years (52 per cent) while the least fall in the group of below 18 years and over 66 years. The respondents between 31 and 45 years account for 26 per cent. The gender of the respondents as illustrated in Figure 4.21 reveals that 97.1 per cent of sampled individuals are male while 2.9 percent (2 respondents) are female. The low number of female respondents could be due to religious belief in the area.

![Age of Respondents](image.png)

Figure 4.20: Age of Respondents
Source: EnvAccord Field Survey, 2014
Figure 4.21: Sex of Respondents
Source: EnvAccord Field Survey, 2014

- **Marital Status**

 Figure 4.22 shows the marital status of respondents at the time of the survey. Of all respondents, 34 per cent had never been married, 60 per cent were currently married while 6 per cent were divorced or separated. None of the respondents were widowed. Also, the families setting of the respondents are in the average of both monogamous and polygamous (Figure 4.23).

Figure 4.22: Marital Status of Respondents
Source: EnvAccord Field Survey, 2014
Ethnicity and Religion

The ethnicity of the respondents is as follows: 95.6 per cent are Hausas, 2.9 per cent are Hausa-Fulani while 1.5 per cent belong to the Igbo ethnic group (Figure 4.24). Their religion also was analysed, it was noticed that 100 per cent of the respondents were of the Islamic religion (Muslims), irrespective of their little variance in tribe and ethnic group.
Residential Status versus Length of Residence

The distribution of respondents by residential status is as follows: 85 per cent of the respondents reside all year round in the communities, 7 per cent were used to being a resident but absent for less than three months, 3 per cent were used to being residents but absent between three and six months, 2 per cent were visitors, while 3 per cent did not declare their residential status (Figure 4.25).

As regards the length of residence, the majority of the respondents with the estimated figure of 90 per cent of the total respondents have been living in their current residential building for over fifteen years (Figure 4.26).

![Diagram of Residential Status]

Figure 4.25: Residential Status of the Respondents
Source: EnvAccord Field Survey, 2014

![Diagram of Length of Residence]

Figure 4.26: Length of Residence
Source: EnvAccord Field Survey, 2014
Educational Status of Respondents

All respondents were asked if they had ever attended formal school. Respondents who had attended school were asked the highest level of school attended (primary, junior secondary, senior secondary, vocational/technical school or tertiary) and the highest class or year completed at that level.

As presented in Figure 4.27, 4.3 per cent of respondents reported no formal education; 13 per cent reported completing between one and six years of primary education; 39 per cent reported senior secondary school education, 7.2 per cent indicated to have completed vocational/technical school and 32 per cent had tertiary education. This indicates that majority of the residents are semi-literate.

![Educational Status Chart](image)

Figure 4.27: Educational Status of Respondents
Source: EnvAccord Field Survey, 2014

Occupation of Respondents

As earlier indicated, the study area is predominantly rural to mid-urban with the population of each community less than 25,000 people. Kankia and Galadima are the most urbanized of the five (5) sampled communities. The occupation of the respondents is indicated in Figure 4.28. Farming (arable or pastoral) is the dominant activities in the area. Some of the respondents also indicated to be students. Other occupational activities of the respondents include petty trading, artisan, and civil service.
The economy of the affected communities is basically agrarian with large scale production of maize, millet, guinea corn, wheat, groundnut and cowpea. Other crops like yam and cassava are produced in small quantities. 75 per cent to 85 per cent of the communities’ labour force is in the agriculture sub-sector.

Cattle rearing are also practiced extensively in the area. Cattle are also used as a source of farm power for agricultural practices and for commercial meat production. As such farming is the dominant primary occupation for most residents of Kankia. Farming is practiced both at the subsistence and commercial level. However, no farmland currently exists on the proposed project site.

Land Ownership for Farming

The land ownership practice in the proposed project area varies. The environmental factors are favourable for agricultural production with the climatic conditions been predominantly semi-arid. However the project area is less suitable for fishing and aquaculture due to the absence of perennial rivers.

Guinea corn, millet, cowpea, maize and sugar cane are food crops that offer the best potentials while vegetables such as tomato and pepper thrive in the study area. Livestock grazing also flourishes in the area and this could be attributed to the abundance of perennial grass which provides forage material for livestock.

The assessment of land ownerships for the agricultural production is presented in Figure 4.29. 87 per cent of the farmers own the cultivated land while 13 per cent use the land rent free (family or community land).
Figure 4.29: Land Ownership for Farming
Source: EnvAccord Field Survey, 2014

- Household Annual Income

Figure 4.30 illustrates the annual income of the respondents in the sampled communities. The annual income of majority of the respondents is above five hundred US dollars ($500).

Figure 4.30: Annual Household Income in the study area in Naira
Source: EnvAccord Field Survey, 2014
Household Monthly Income

The monthly income of the sampled households is presented in Figure 4.31. 19 per cent of the respondents had income of less than USD25. This is followed by the households in the group of USD25 to USD100 (40 per cent). 24 per cent of the respondents also receive USD100 to USD254. The respondents earning above USD508 and between USD254 to USD508 per monthly had 5 per cent and 12 per cent respectively.

![Average Monthly Income](image)

Figure 4.31: Average Monthly Income of In-scope Households
Source: EnvAccord Field Survey, 2014

Housing Characteristics of Respondents

Table 4.22 summarizes the housing characteristics of the respondents in the study area. These include: construction materials for wall, roofing, and floor, toilet facility and tenure of housing. Mud plastered house had the highest percentage and pit latrine is the most commonly used toilet facilities among the respondents.

<table>
<thead>
<tr>
<th>Building Parts</th>
<th>Value Label</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Material (Wall)</td>
<td>Plank Wall</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Mud (plastered)</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td>Mud (not plastered)</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>Cement Block</td>
<td>31.9</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Construction Material (Roofing)</td>
<td>Asbestos slates</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Corrugated aluminium zinc sheets</td>
<td>65.3</td>
</tr>
<tr>
<td></td>
<td>Nigerite modern roof</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Thatched roof</td>
<td>2.9</td>
</tr>
<tr>
<td>Building Parts</td>
<td>Value Label</td>
<td>Percentage</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Construction material</td>
<td>Earthen</td>
<td>18.8</td>
</tr>
<tr>
<td>(Floor)</td>
<td>Cement</td>
<td>60.9</td>
</tr>
<tr>
<td></td>
<td>Tiles</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Toilet Facility</td>
<td>Pit latrine</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>Water borne system</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>Toilet facility outside dwelling</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Tenure of housing</td>
<td>Owner occupier</td>
<td>78.3</td>
</tr>
<tr>
<td></td>
<td>Rent/Lease</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Occupied rent free</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field Survey, 2014

- **Accessibility of Educational Facilities to the Respondents**

The communities have access to primary and secondary schools (Figure 4.32). All the sampled communities have primary schools while secondary schools are located in Kankia and Galadima communities.

![Education Accessibility](image)

Figure 4.32: Access to Education by the Respondents

Source: EnvAccord Field Survey, 2014

Source of Power to the Respondents

Respondents were asked about sources of energy for household amenities, lighting and cooking. Torch and batteries (40 per cent) is a commonly used source of lighting in the communities in absence of electricity supply from the national grid. This is due to the fact that it is the most accessible and affordable power...
source by everybody. It was observed that there is availability of power source from the national grid in all the sampled communities except Kauyan Maina.

The respondents in Kauyan Maina indicated that the community has never been connected to the national grid. The power supply from the national grid to Kankia, Galadima, Gachi and Kafin Dangi is on the average of 12 hours per day. Other sources of power indicated by the respondents include generators, kerosene lamp and candle (Figure 4.33).

![Source of Power](image)

Figure 4.33: Source of Power used by the Respondents
Source: EnvAccord Field Survey, 2014

In terms of sources of cooking fuel, majority of the respondents indicated firewood (61 per cent) as indicated in Figure 4.34.

![Source of Cooking Fuel](image)

Figure 4.34: Source of Cooking Fuel used by the Respondents
Source: EnvAccord Field Survey, 2014
Assessment of Changes in Standard of Living

The assessment of the opinion of the respondents on changes that have occurred over the last two years in terms of the standard of living is illustrated in Figure 4.35. 68 per cent of the respondents claimed to have a better standard of living on annual basis.

![Figure 4.35: Responses to Standard of Living](source: EnvAccord Field Survey, 2014)

Perception on the Proposed Project

As shown in Figure 4.36, a total of 74 per cent of the respondents claimed to be aware of the proposed Project while 26 per cent claimed not to be aware. 87 per cent of the respondents believed that the project would be highly beneficial to the communities as a whole in terms of job employment and improved socio-economic activities (Figure 4.37).

![Figure 4.36: Respondents’ Rate of Project Awareness](source: EnvAccord Field Survey, 2014)
Concerns of Respondents on the proposed Project
In general, the respondents stated that the overall objectives of the proposed Project are good for the economic development of the area. However, some of the respondents raised some requests/concerns which include: youths from the communities should be considered for employment and given priority over other non-indigenes during project development; and provision of basic social amenities such as borehole for the communities.

Prevalent Disease
The prevalent disease in the area as indicated by the respondents is malaria (Figure 4.38). This is however not peculiar to the study area alone.
Health Status of Respondents

The respondents were asked to rate their households' health status. 80 per cent of the respondents claimed to have good health (Figure 4.39).

![Households' Health Rank](image)

Figure 4.39: Respondents' Households' Health Ranking
Source: EnvAccord Field Survey, 2014

Healthcare Facility used and Frequency of Visit

General hospital recorded the highest among the health facilities usually visited by the respondents (Figure 4.40). On the frequency of visit, 40 per cent of the respondents claimed not have visited any health facilities in the last few months while 5 per cent indicated to have done so more than 5 times (Figure 4.41).

![Healthcare Facility](image)

Figure 4.40: Type of Healthcare Facilities used by the Respondents
Source: EnvAccord Field Survey, 2014
Maternal Health
The respondents were asked questions regarding the maternal health of their households which include where they received ante-natal care. 71 per cent indicated Government hospital and 29 per cent mentioned traditional birth attendants (Figure 4.42).

Figure 4.41: Frequency of Visit to Healthcare Facilities
Source: EnvAccord Field Survey, 2014

4.5.5 Focus Group Discussions (FGDs)
The FGDs were held with different groups from the sampled communities in the Project’s area of influence with the aim of informing the people about the proposed Project, its purpose, benefits, the project activities, likely impacts of the
projects and proposed mitigation measures. In addition, the FGDs provided an avenue for the groups to give their opinion and concerns about the Project and their expectations.

The FGDs were held at the palace of Kankia District Head, Kankia on October 21, 2014 and included representatives of farmers, hunters, youths and women groups from each of the sampled communities (Plates 4.23 to 4.26). The discussion was held with the groups in English while an interpreter was available to convey the information to the groups in Hausa for better understanding.

The list of individuals that attended the FGDs is provided in Appendix 8. The groups however included women (15), youths (17), hunters and farmers (23). PASL will ensure that stakeholder engagement with different groups in the communities is sustained throughout the life cycle of the project. In addition, Corporate Social Responsibility (CSR) activities will be tailored to fit the need of the relevant groups in the affected communities.

The concerns raised by each group in relation to the Project during the FGDs are as follows: the adult women were more concerned about the provision of schools (both Islamic and Western), potable water, equipped health care facility and a vocational centre where they can learn different trades. They believe that they will benefit greatly from the proposed Project when put to use as it will boost their businesses, commercial, health and social life.

The adult men expressed their needs for accessible roads in all the five (5) communities with good drainage system. They emphasized that they hope for better living and income and they highly welcome the proposed Project. The hunters and farmers posed questions ranging from if there is plan available on receiving complaints on the project, involvement of the natives, provision of another land for pastoral farming and grazing, and if the panels have any effects on crops and farm productions. It was gathered during survey that the project site is not exclusively reserved for grazing; and there are other areas within the District that could provide good forage for grazing animals.

The youths were very comfortable with the proposed project and unanimously show their support for its implementation. They were concerned about job opportunity the proposed Project would offer. They also raised concern on the extent at which the solar powered electricity will be available.

Some grey areas were cleared during the discussions which included the provision of electricity to communities. It was mentioned that based on the applicable laws guiding power generation and transmission in Nigeria, the project developer can only generate power. Power distribution to local communities is handled by
Distribution Companies licensed by the Nigeria Government. In terms of employment, there is provision to hire the local people in a systematic manner during the Project development. In addition, it is the goal for the proposed Project to improve the conditions of the communities through implementation of corporate social responsibility (CSR) initiatives which will be strategically tailored to the needs of the communities.

Plate 4.23: FGD with the farmers group from the five communities within the study area
Plate 4.24: FGD with the hunters group

Plate 4.25: FGD with the youth group
Plate 4.26: FGD with the adult women group from the five communities within the study area

4.6 Stakeholder Engagement

This section describes the activities that the Project has carried out to engage and consult with key stakeholders. It describes the process by which stakeholders were identified, the means by which they were consulted, and the outcomes of the consultations to date, some of which were already discussed in the previous sections. It further describes the actions that the Project took to disclose pertinent information to stakeholders.

4.6.1 Defining Stakeholder Engagement

Stakeholder engagement is an ongoing process of sharing project information, understanding stakeholder concerns, and building relationships based on collaboration. Stakeholder consultation is a key element of engagement and essential for effective project delivery. Disclosure of information is equally as vital.
In line with current guidance from the International Finance Corporation (IFC), consultation should ensure “free, prior and informed consultation of the affected communities”. In other words, effective consultation requires the prior disclosure of relevant and adequate project information to enable stakeholders to understand the risks, impacts, and opportunities.

The Project’s consultation program was intended to ensure that stakeholder concerns are considered, addressed and incorporated in the development process.

The stakeholder engagement documents for the scoping phase of the EIA are provided in Appendix 9.

4.6.2 Stakeholder Engagement Plan

To fulfil the overall objectives of stakeholder engagement for the proposed Project, a stakeholder engagement plan (SEP) has been developed which will be implemented throughout the Project life-cycle (Appendix 10). The plan lays out a process for consultation and disclosure. The four stages of the Stakeholder Engagement Plan are as follows:

- Scoping;
- EIA Study;
- EIA Disclosure; and
- Project Execution.

Table 4.23 is a summary of the process and stages of consultation for this EIA study.

<table>
<thead>
<tr>
<th>Stages/Procedure</th>
<th>Goals</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Scoping and Design</td>
<td>• Registration with FMEnv.</td>
<td>• Adequate consultation with authorities</td>
</tr>
<tr>
<td></td>
<td>• Discuss project design</td>
<td>• Reduce conflict areas</td>
</tr>
<tr>
<td></td>
<td>• Ensure compliance with FMEnv regulations and guidelines</td>
<td></td>
</tr>
<tr>
<td>Field Consultations</td>
<td>• Consult host communities on socio-economic aspects</td>
<td>• Ensure that the public, being the primary stakeholders,</td>
</tr>
<tr>
<td></td>
<td>• Consult with public on health and EMF emission and risks of electrical hazards concerns</td>
<td>understand the project and its benefits</td>
</tr>
<tr>
<td></td>
<td>• Consult on the general impact of the Transmission Line</td>
<td>• Ensure the Project developer understands the concerns and issues raised by the local communities so that appropriate mitigation measures can be taken.</td>
</tr>
</tbody>
</table>
The following sections describe the stakeholder engagement activities that have been carried out so far.

4.6.2.1 Scoping Activities
At the scoping stage, project stakeholders were identified in order to understand the individuals, groups, and organizations that may be affected by or may
influence project development positively or negatively. Initially, a broad list of potentially affected and interested parties (AIPs) was considered, such as:

- National, regional and local government;
- Local businesses/cooperatives and associations;
- Local communities and individuals; and
- National and local environmental and social nongovernment organizations (NGOs)

A scoping workshop (Plate 4.27) was held in Katsina on October 16, 2014. The workshop was attended by representatives from Government Authorities, Non-Governmental Organizations (NGOs) and representatives of the host communities. The identified stakeholders were given the opportunity to participate and contribute to the EIA process. The list of stakeholder groups that attended the scoping workshop is highlighted in Table 4.24. The total number of attendees was 31. The summary of comments, suggestions and concerns that were raised during the scoping workshop and how they were addressed is provided in Table 4.25.

Plate 4.27: Sample photograph of regulatory authorities present at the scoping workshop
Table 4.24: Summary of Stakeholder Engagement Activities

<table>
<thead>
<tr>
<th>Stakeholder Group and Interest in the proposed project</th>
<th>Stakeholder Name</th>
<th>Stakeholder Level</th>
<th>Connection to the Proposed Project</th>
<th>Means of Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Authorities</td>
<td>Federal Ministry of Environment (FMEnv)</td>
<td>✓</td>
<td>National</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Nigerian Electricity Regulatory Commission (NERC)</td>
<td>✓</td>
<td>Regional</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Nigerian Bulk Electricity Trading (NBET) Plc.</td>
<td>✓</td>
<td>Local</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Transmission Company of Nigeria (TCN), Kankia, Katsina.</td>
<td>✓</td>
<td>Letter and BID</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Environment</td>
<td>✓</td>
<td>Scoping Workshop</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Lands, Housing and Urban Development</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Kankia Local Government Authority</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

- Government Authorities:
 - Federal Ministry of Environment (FMEnv): National government are of primary importance in terms of establishing policy, granting permits or other approvals for the Project, and monitoring and enforcing compliance with Nigerian law throughout all stages of the Project life-cycle.
 - Nigerian Bulk Electricity Trading (NBET) Plc.: Regional
 - Transmission Company of Nigeria (TCN), Kankia, Katsina: Local
 - Katsina State Ministry of Environment: National
 - Katsina State Ministry of Lands, Housing and Urban Development: Regional
 - Kankia Local Government Authority: Local

- Community:
 - Magaji Gari, Kafin Dangi, Kyauyan Maina, Gachi and Galadima: Households and communities that may be directly or indirectly
Table 4.25: Initial Scoping Consultation Findings

<table>
<thead>
<tr>
<th>Stakeholder Group and Interest in the proposed project</th>
<th>Stakeholder Name</th>
<th>Stakeholder Level</th>
<th>Connection to the Proposed Project</th>
<th>Means of Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Governmental Organizations (NGOs)</td>
<td>• International Centre for Energy, Environment and Development (ICEED)</td>
<td>National</td>
<td>affected by the proposed Project</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-Governmental Organizations (NGOs)

NGOs with direct interest in the project and its social and environmental aspects that are able to influence the project directly or through public opinion.

Table 4.25: Initial Scoping Consultation Findings

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Priority Issues</th>
<th>Quotes/Comments</th>
<th>Response during scoping workshop</th>
<th>Sections of EIA report that addressed comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Ministry of Environment</td>
<td>Permit application procedures, EIA process</td>
<td>The representative of the FMEnv at the scoping workshop lauded the project and asked the following questions: what will be the impact of the project based on the modification plan for expansion from 20MW to 80MW and increase in land acquisition? What is the technology proposed to be used for the project because this was not</td>
<td>The Commissioner of Resource Development, Katsina State expressed his appreciation to all stakeholders present. He mentioned that there was a Memorandum of Understanding (MoU) between Katsina State Government and Pan Africa Solar Limited; therefore, the project is in partnership with the PASL. He also mentioned some benefits which are</td>
<td>Chapter 3 (Project Description), Chapter 5 (Potential and Associated Impacts), Chapter 6 (Mitigation Measures) Chapter 7 (Environmental Management Plan)</td>
</tr>
</tbody>
</table>

Aside the scoping workshop, a Stakeholders’ consultation meeting (town hall meeting) was held on October 20, 2014 at the palace of “Kankia Magajin” (the district head of Kankia). The meeting was attended by the head of Kankia District and the heads of communities/wards that may be
<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Priority Issues</th>
<th>Quotes/Comments</th>
<th>Response during scoping workshop</th>
<th>Sections of EIA report that addressed comments potentially affected by the Project.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>discussed by the Client?</td>
<td>– generation of more revenue,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>He also asked if there will be another stakeholder engagement as most of the people affected by the project were not around.</td>
<td>– availability of more power</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>He advised that the PASL should find out the major needs of the people per community and incorporate into their Corporate Social Responsibility (CSR) instead of imposing their ideas of CSR on the people.</td>
<td>– creation of more jobs for the indigenes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– attraction of investors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>He said the executive governor of Katsina state was making every effort to ensure the project success and thus encouraged all stakeholders to support the project.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Commissioner responded to some of the questions raised by the FMEnv representative. He said there will be no adverse impact relating to the displacement of people or settlements therefore there will not be need for compensation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The project site is within the Katsina Government reserved area and is not used for farming. There will be some negative impact during the construction stage like noise, air pollution due to emissions from large vehicles. However, necessary mitigation and compensation</td>
<td></td>
</tr>
<tr>
<td>Stakeholder</td>
<td>Priority Issues</td>
<td>Quotes/Comments</td>
<td>Response during scoping workshop</td>
<td>Sections of EIA report that addressed comments</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Federal Ministry of Environment (Katsina State Office) | EIA process and stakeholder consultation | The representative of the FMEnv (Katsina State Office) at the scoping workshop asked the following questions:
- Who are the developers of the project?
- Is the project a joint one or solely owned by the Katsina State? | The project developers are Katsina State Government, Pan Africa Solar Limited and JCM Capital | Chapter 1 (Introduction) |
| National Electricity Regulatory Commission (NERC) | EIA process and stakeholder consultation | The representative of the (NERC) at the scoping workshop asked the following questions:
- What measures are in place to prevent electrocution?
- How will the technology transfer impact the people?
- What plan is in place for the hearing effect of the people due to noise?
- What is the plan against hazardous emission? | Mr. Olumide Sanya of PASL that there are measures put in place to avoid electrocution as mentioned during both the technical and environmental presentations. Funmi mentioned that qualified skilled people of the land will be employed and trained thereby impacting them with knowledge. The Honourable Commissioner also mentioned by informing the house that there is an agreement between Katsina State Government and Pan Africa Solar Ltd to send Twenty (20) people from Kankia abroad for training to acquire skills that will be relevant for the operation of the facility. Funmi of EnvAccord explained that the Maximum permissible noise level is 90dBA and not 60dBA; however, during | Chapter 6 (Mitigation Measures)
Stakeholder engagement plan has been developed as part of this EIA |
<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Priority Issues</th>
<th>Quotes/Comments</th>
<th>Response during scoping workshop</th>
<th>Sections of EIA report addressed comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigerian Bulk Electricity Trading Plc.</td>
<td>EIA process and stakeholder consultation</td>
<td>-</td>
<td>construction it is recommended as one of the mitigation measures that construction activities will be limited to day time and not extended to night hours so as to prevent disturbance during sleeping hours. It was clarified that there will be no hazardous emissions.</td>
<td></td>
</tr>
</tbody>
</table>
| Katsina State Ministry of Environment | EIA process and stakeholder consultation | The representative of the (Katsina State Ministry of Environment) at the scoping workshop asked the following questions:
 - The Client should specify the numbers of panels to be given to the houses as well as the number of houses that will be benefitted.
 - There should be serious consideration on CSR. | PASL will develop and maintain a robust Corporate Social Responsibility (CRS) which will be tailored to fit the need of the project area | Chapter 7 (Environmental Management Plant) – Additional management plan to be developed for the project. |
<p>| Vice Chairman, Kankia Local Government Area | EIA process and stakeholder consultation | He expressed his happiness for the project and gratitude to the stakeholders. He was of the opinion that the project will not only be for the people of Kankia but for Katsina State as a whole. | He was appreciated | |</p>
<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Priority Issues</th>
<th>Quotes/Comments</th>
<th>Response during scoping workshop</th>
<th>Sections of EIA report addressed comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Deputy Surveyor general of katsina state (Surveyor Mohammed Kabir)</td>
<td>Stakeholder consultation</td>
<td>He wanted to know who takes the responsibility of compensation for the land owners. Since airplanes fly through the project site, what are the measures in place to avoid interference. What measures are in place to guide against road congestion and accident along the ever-busy Kano-Katsina road?</td>
<td>The Hon. Commissioner of Resource Development said that the land belongs to the state government (Government reserved area) therefore there is no issue of compensation. He further stated that the people should not confuse the Pan African Solar Project with the New German Project because they are both Solar projects. Funmi of EnvAccord explained that the panels will be coated to prevent effect of lighting also the panels will be installed at a particular angular orientation that will not affect the airplanes. No there are no existing airports within the project's area of influence.</td>
<td>-</td>
</tr>
<tr>
<td>The District Head Kankia Community</td>
<td>Stakeholder consultation</td>
<td>The District Head expressed his delight at the project and gave his support for the project on behalf of people from Kankia. He mentioned that his people are in full support of projects that will bring advancement to the communities and Katsina as a whole.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
4.6.2.2 EIA Study Activities

Engagement activities in the EIA study stage included consultations designed to introduce the Project to stakeholders that could potentially be affected by the Project. This was intended to refine the EIA scope by generating additional feedback on the EIA approach, key issues and key stakeholders to be consulted, as well as to inform the development of mitigation for the Project.

In the course of stakeholders’ engagement activities, different interest groups were also consulted. Aside the scoping workshop, a Stakeholders’ consultation meeting (town hall meeting) was held on October 20, 2014 at the palace of “Kankia Magajin” (the district head of Kankia). The meeting was attended by the head of Kankia District (Plate 4.28) and the heads of communities/wards that may be potentially affected by the Project (Plate 4.29). The total number of attendees was 25.

The communities were unanimous in declaring that their most important need was provision of constant electricity and job creation for their indigenes. Therefore, the prospects of the project are a major source of excitement for them. They were of the opinion that it would benefit the communities as a whole by stimulating development and employment opportunities. They also expressed the need for a well-staffed standard hospital that would have drugs and 24 hour services with the presence of a functional ambulance. Provision of pipe-borne water was also mentioned as one of the social amenities the communities would need.

Plate 4.28: Stakeholder Engagement Meeting with Kankia District Head and the village heads
Plate 4.29: EnvAccord Field team, Kankia District Head and Village Heads
CHAPTER FIVE:

ASSOCIATED AND POTENTIAL IMPACTS
CHAPTER FIVE

ASSOCIATED AND POTENTIAL IMPACTS

5.1 Introduction

This chapter presents the potential environmental and socio-economic impacts associated with the proposed Photovoltaic (PV) Solar Power Plant Project in Kankia Local Government Area of Katsina State, Nigeria.

Additional mitigation measures required to complement those incorporated in the Project design for the identified impacts are highlighted in the next chapter.

5.2 Impact Assessment Overview

The potential for an environmental impact exists where an environmental aspect has been identified i.e. where a project activity has been determined to have the potential to interact with the bio-physical and socio-economic environment. The significance of each impact is then determined.

The methodology used for assessing the potential and associated impacts of the proposed Project consists of five (5) major steps:

Step 1: Identification of the proposed Project activities and their interaction (directly or indirectly) with the identified environmental receptors/resources in the Project area;

Step 2: Comprehensive preliminary identification of potential impacts as a result of cause and effect relationship;

Step 3: Comparative assessment of impact importance, identification of impacts that are likely to be significant through application of a basic set of impact significance criteria based on the preliminary information available about each impact;

Step 4: Detailed assessment of the identified focus area impacts characterization techniques, quantification of impacts to the extent possible and rigorous qualitative characterization of impacts that cannot be quantified; and

Step 5: Final assessment of the severity levels of impacts through application of the results of the quantitative and qualitative characterization of impacts developed in Step 4 to a set of objective impact severity criteria; identification of impacts warranting mitigation.
Figure 5.1 summarizes the process used for identifying and assessing potential impacts of the proposed Project.

Figure 5.1: Overview of the Impact Assessment Process

The primary objectives of the impact assessment process are to:

- Establish the significance of identified potential impacts that may occur as a result of the proposed Project activities.
- Differentiate between those impacts that are insignificant (i.e. can be sustained by natural systems) and those that are significant (i.e. cannot be sustained by natural systems).

In determining the significance of impacts, the factors considered included: magnitude of impacts (which is a function of the combination of the following impact characteristics: extent, duration, scale and frequency); value/sensitivity/fragility and importance of relevant environmental and social...
receptors; legal/regulatory requirements; and public perceptions (based on stakeholders’ consultation).

The assessment of impact significance is qualitative and quantitative.

Qualitatively, the impact significance is ranked on four (4) widely accepted levels namely:

- Major,
- Moderate,
- Minor, and
- Negligible.

These rankings are used for both bio-physical and socio-economic impacts. Potential cumulative impacts are also considered.

The impact assessment undertaken for the proposed Project covers the entire life cycle of the Project i.e.:

- Pre-construction;
- Construction/Installation;
- Operation;
- Decommissioning and Abandonment

5.3 Impact Prediction Methodology

Various impact prediction guidelines and methodologies have been developed and applied in various EIA activities. Internationally acceptable methods of impact prediction and evaluation include the following:

- Checklist (Canter, 1977)
- Interaction Matrix (Leopold et al., 1971)
- Overlays Mapping (McHarg, 1968);
- Networks; and
- Battelle Environmental Evaluation System (Dee et al., 1972)

The Interaction Matrix method, when compared to the other approaches, provides the same level of details requires comparable knowledge of the environment and relies on limited data unlike the other methods that rely on availability of large historical data bank. It also has a wide range of application. Thus, a modified Leopold Interaction Matrix was selected for the purpose of impact screening for this EIA.
5.4 Identification of Environmental and Socio-economic Aspects and Impacts

5.4.1 Environmental and Socio-economic Aspects
The International Organization for Standardization’s Environmental Management Systems (EMS), ISO 14001, defines an environmental aspect as: “An element of an organization’s activities, products or services that can interact with the environment.”

To identify environmental aspects of the Project, the proposed Project activities were considered in terms of their direct or indirect potential to:

- Interact with the existing natural environment including its physical and biological elements;
- Interact with the existing socio-economic environment; and
- Breach relevant policy, legal and administrative frameworks including national legislation, relevant international legislation/conventions, standards and guidelines, and corporate environmental policy and management systems.

Activities assessed covered routine, non-routine and accidental events.

5.4.2 Definition of Impacts
ISO 14001 defines an environmental impact as: “Any change to the environment, whether adverse or beneficial, wholly or partially resulting from an organization’s activities, products or services.”

Table 5.1 illustrates the links between activity, aspect and impact.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Aspect</th>
<th>Potential Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of vehicles for transporting</td>
<td>Exhaust emissions</td>
<td>Decrease in air quality</td>
</tr>
<tr>
<td>equipment to site</td>
<td>Noise</td>
<td>Disturbance to surrounding environment</td>
</tr>
<tr>
<td>Site clearing and grading</td>
<td>Removal of the vegetation</td>
<td>Loss of biodiversity or natural habitat</td>
</tr>
<tr>
<td></td>
<td>and fauna</td>
<td></td>
</tr>
<tr>
<td>Plant Installation</td>
<td>Excavation of soil</td>
<td>Soil erosion</td>
</tr>
</tbody>
</table>

5.4.3 Potential Impact Characteristics
The following characteristics were also used to define potential impacts that may be associated with the proposed Project:
i. **Negative:** An impact that is considered to represent an adverse change from the baseline or to introduce a new undesirable factor.

ii. **Positive:** An impact that is considered to represent an improvement to the baseline or to introduce a new desirable factor.

iii. **Direct:** Impacts that result from the direct interaction between a planned project activity and the receiving environment.

iv. **Indirect:** Impacts that result from other activities that are encouraged to happen as a consequence of the project.

v. **Temporary:** Temporary impacts are predicted to be of short duration, reversible and intermittent/occasional in nature.

vi. **Short-term:** Short term impacts are predicted to last only for a limited period but will cease on completion of the activity, or as a result of mitigation measures and natural recovery.

vii. **Long-term:** Impacts that will continue for the life of the project, but cease when the project stops operating.

viii. **Permanent:** Potential impacts that may occur during the development of the Project and cause a permanent change in the affected receptor or resource that endures substantially beyond the project lifetime.

ix. **On-site:** These are limited to the project site.

x. **Local:** Impacts that affect locally important environmental resources or are restricted to a single (local) administrative area or a single community.

xi. **Regional:** Impacts that affect regionally important environmental resources or are experienced at a regional scale as determined by administrative boundaries.

xii. **National:** Impacts that affect nationally important environmental resources; affect an area that is nationally protected; or have macro-economic consequences.

xiii. **Reversible:** An impact that the environment can return to its natural state.

xiv. **Irreversible:** An impact that the environment cannot return to its original state, e.g. the extinction of an animal or plant species.

xv. **Cumulative:** Potential impacts that may result from incremental changes caused by other past, present or reasonably foreseeable actions together with the Project.

xvi. **Residual:** Both environmental and social impacts that will remain after the application of mitigation measures to project impacts during each of the project phases (preconstruction, construction, operation, decommissioning/post-decommissioning).

5.4.4 Screening and Scoping for Potential Impacts
A modified version of the Leopold Interaction-matrix technique was employed to screen and scope for the potential impacts of the proposed Project on the environment. The basis for the screening was derived from the following:

- Knowledge of the Project activities as summarized in Table 5.2.
- Detailed information on the environmental and socio-economic setting of the study area/project’s area of influence
- Review of other EIA reports on similar projects/environments.
- Series of experts group discussions, meetings and experience on similar projects.

Table 5.2: Summary of the proposed Project Activities

<table>
<thead>
<tr>
<th>S/N</th>
<th>Project Phase</th>
<th>Associated Project Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pre-construction</td>
<td>Site selection/land take
Mobilization of personnel, equipment, materials to site
Site clearing and preparation</td>
</tr>
<tr>
<td>2.</td>
<td>Construction/Installation</td>
<td>Civil work activities including construction/improvement of internal access roads, excavation, trenching, cable laying, foundation piling, construction of buildings such as office
Installation of power plant facilities and erection of high voltage power lines (pylon)
Waste generation</td>
</tr>
<tr>
<td>3.</td>
<td>Operation</td>
<td>Measuring the performance of the PV power through the use of telemetric monitoring
Regular onsite preventive and corrective maintenance
Waste generation</td>
</tr>
<tr>
<td>4.</td>
<td>Decommissioning and Abandonment</td>
<td>Dismantling of PV modules and plant facilities including removal of underground cable runs
Waste generation
Rehabilitation of disturbed land</td>
</tr>
</tbody>
</table>

The Leopold Interaction Matrix developed for the proposed Project is presented in Tables 5.3 and 5.4. The Interaction Matrix was developed by placing the proposed Project activities in the rows and the identified existing environmental and socio-economic components in the columns. The interaction was then established.
Table 5.3: Activity-Receptor Interaction for Impact Screening

<table>
<thead>
<tr>
<th>Summary of Project Activities at Various Phases</th>
<th>Receptors</th>
<th>Physical</th>
<th>Biological</th>
<th>Socio-economic</th>
<th>Others (Health and Safety)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/Land Take</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilization of personnel, materials and equipment to site</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Site clearing and preparation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Construction/Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil works activities including installation of PV modules and other components</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Installation of transmission pylon (line)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Waste generation and disposal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of Photovoltaic Modules and other components including routine maintenance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Evacuation of power to substation through 132 kV transmission line</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste generation</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decommissioning/Abandonment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal of PV modules and dismantling of other components</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Site remediation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Waste generation and disposal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.4: Leopold’s Activity-Receptor Interaction Matrix

<table>
<thead>
<tr>
<th>Summary of Project Activities at Various Phases</th>
<th>Receptors</th>
<th>Physical</th>
<th>Biological</th>
<th>Socio-economic</th>
<th>Others (Health and Safety)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/Land Take</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilization of personnel, materials and equipment to site</td>
<td>2(1) 2(1)</td>
<td></td>
<td></td>
<td></td>
<td>1(2)</td>
</tr>
<tr>
<td>Site clearing and preparation</td>
<td>2(1) 2(1)</td>
<td>4(2)</td>
<td>1(1)</td>
<td>3(2) 3(2) 4(2)</td>
<td>3(1)</td>
</tr>
<tr>
<td>Construction/Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil works activities including installation of PV modules and other components</td>
<td>3(1) 2(3)</td>
<td>4(1)</td>
<td>2(2)</td>
<td>2(2) 3(2) 3(2)</td>
<td>3(2) 1(2) 1(2) ++ 2(2) 2(3)</td>
</tr>
<tr>
<td>Installation of transmission pylon (line)</td>
<td>2(1) 2(1)</td>
<td>3(1)</td>
<td></td>
<td>2(1) 2(1)</td>
<td>+ 2(2) 2(2) 2(2)</td>
</tr>
<tr>
<td>Waste generation and disposal</td>
<td>2(1) 2(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of Photovoltaic Modules and other components including routine maintenance</td>
<td>2(2)</td>
<td></td>
<td>2(2)</td>
<td>2(1) 2(1)</td>
<td>2(2) ++ 2(2) 3(2) 2(2)</td>
</tr>
<tr>
<td>Evacuation of power to substation through 132 kV transmission line</td>
<td>1(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decommissioning /Abandonment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal of PV modules and dismantling of other components</td>
<td>2(1) 2(1)</td>
<td>3(2)</td>
<td>3(2)</td>
<td>2(2) 2(2)</td>
<td>2(3)</td>
</tr>
<tr>
<td>Site remediation</td>
<td>2(2) 2(2)</td>
<td></td>
<td>2(2)</td>
<td>2(2) 2(2)</td>
<td>2(1)</td>
</tr>
<tr>
<td>Waste generation and disposal</td>
<td>2(1) 2(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x(y) = impact magnitude (sensitivity of receptor)
Table 5.5 presents the resources/receptors considered together with the changes that might indicate a Project-related impact.

Table 5.5: Resource/Receptors and Impacts Indicators Considered

<table>
<thead>
<tr>
<th>Environmental Receptor</th>
<th>Comment</th>
<th>Potential Impact Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>The soil environment of the Project site and its surroundings</td>
<td>Changes in physical, chemical and biological properties, loss of soil ecology and fertility, compaction, erosion etc.</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Water flow pattern along the ground surface in the project area</td>
<td>Increased intensity and volume of storm water runoff; increased sediment load in the drainage channels as a result of erosion; and reduced water quality.</td>
</tr>
<tr>
<td>Groundwater/Aquifers</td>
<td>The groundwater resources and aquifers of area within the area of influence of the proposed project.</td>
<td>Groundwater level, changes in physical, chemical and biological properties, contamination, and availability of potable water as one (1) or two (2) boreholes is envisaged to be dug on the Project site.</td>
</tr>
<tr>
<td>Landscape/Topography</td>
<td>The geomorphological land forms and terrain of the project area</td>
<td>Alteration in drainage pattern, changes in landscape.</td>
</tr>
<tr>
<td>Ambient Noise</td>
<td>Ambient noise level in the Project site and its surrounding environment</td>
<td>Increased ambient noise level, night and day-time disturbance, hearing loss, communication impairment etc.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Air quality in and around the proposed Project site.</td>
<td>Increased concentrations of gaseous and particulate pollutants (such as NOx, SOx, CO, particulate in form of dust)</td>
</tr>
<tr>
<td>Biological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Flora</td>
<td>Terrestrial plant species that occur within the Project site and its immediate surroundings</td>
<td>Loss of terrestrial flora, introduction of new species.</td>
</tr>
<tr>
<td>Terrestrial Fauna</td>
<td>Terrestrial fauna rely on the Project site as a habitat and/or food source.</td>
<td>Loss of terrestrial fauna; involuntary migration.</td>
</tr>
<tr>
<td>Socio-economic Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Existing land use of the Project site</td>
<td>Loss of land value for grazing</td>
</tr>
<tr>
<td>Population</td>
<td>Existing demography of the communities in the study area</td>
<td>Increased in local population due to influx of workers</td>
</tr>
<tr>
<td>Utilities</td>
<td>The utilities (e.g. power supply, water, sewerage)</td>
<td>Changes in existing utilities, pressure on public utilities.</td>
</tr>
</tbody>
</table>
5.4.5 Determination of Impact Significance

Once all environmental aspects were identified, the levels of impacts that may result from the proposed Project activities were assessed. Three (3) stages were utilized to establish significance of impacts as follows:

- **Impact Magnitude** which is a function of the combination of the following impact characteristics: extent, duration, scale and frequency;

- **Value/Sensitivity/Fragility and importance of the identified receptor or resources;**

- **Identification of the impact significance,** which is the “product” of a combination of the above two key variables.

The magnitude of an effect is often quantifiable in terms of, for example, the extent of land take, or predicted change in noise levels while the sensitivity, importance or value of the affected resource or receptor is derived from:

- Legislative controls;

<table>
<thead>
<tr>
<th>Environmental Receptor</th>
<th>Comment</th>
<th>Potential Impact Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>Infrastructure such as roads, waste handling facilities in the Project area.</td>
<td>Access to road, access to waste management facilities, access to emergency services</td>
</tr>
<tr>
<td>Employment</td>
<td>The employment situation in the project area and beyond.</td>
<td>Opportunities for local and national employment; changes in income level</td>
</tr>
<tr>
<td>Visual Prominence</td>
<td>The view of the Project site and its surroundings</td>
<td>Landscape alterations resulting in unpleasant changes in the visual character of the area</td>
</tr>
<tr>
<td>Other (Health and Safety)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction workers</td>
<td>The health and safety of workers involved in the construction phase of the proposed Project.</td>
<td>Accidents, injury, fatality, exposure to nuisance (dust, noise), fire, spread of sexually transmitted diseases such as HIV (Human Immunodeficiency Virus)</td>
</tr>
<tr>
<td>Workplace Health and Safety</td>
<td>The health and safety of employees involved with the operations phase of the Project.</td>
<td>Accidents, injury, exposure to radiation (Electromagnetic Field), explosion, ergonomics.</td>
</tr>
<tr>
<td>General Public</td>
<td>The health and safety of general public including people residing or working in the Project’s area of influence</td>
<td>Exposure to radiation (Electromagnetic Field), accident, fire, explosion, etc.</td>
</tr>
</tbody>
</table>
- Designated status within the land use planning system;
- The number of individual receptors, such as residents;
- An empirical assessment based on characteristics such as rarity or condition; and
- The ability of the resource or receptor to absorb change.

The determination of significance also includes consideration of performance against environmental quality standards or other relevant pollution control thresholds; and compatibility with environmental policies.

All through the impact prediction and evaluation process, expert discussions were constituted and employed extensive use of matrices and predefined criteria in predicting environmental impacts, determining their magnitude, and impact significance. To minimize subjectivity, independent scores were thereafter statistically analyzed and the results of the scores judged as follows:

- if variance, \(s^2 < 5\% \) of the mean, subjectivity is minimal and the score is good; and
- if \(s^2 > 5\% \) but \(< 10\% \) of the mean, the score is fair and scorers were given the opportunity to review their scores.

5.4.5.1 Impact Magnitude

Magnitude is in practice a continuum, and evaluation along the spectrum requires the exercise of professional judgment and experience. Each impact is evaluated on a case-by-case basis, and the rationale for each determination is noted. The magnitude designations employed for potential negative impacts, are:

- Negligible,
- Low,
- Medium and
- High.

In the case of a positive impact, it is considered sufficient for the purpose of the impact assessment to indicate that the Project is expected to result in a positive impact, thus no magnitude designation has been assigned.

The magnitude of an impact takes into account the various dimensions of a particular impact in order to make a determination as to where the impact falls on the spectrum from negligible to high. These criteria are discussed further in the sub-sections below.
5.4.5.1.1 Determining Magnitude for Bio-physical Impacts

For bio-physical impacts, the quantitative definitions for the spatial and temporal dimension of the magnitude of impacts used in this assessment are provided in Table 5.6 and summarized in the following paragraphs:

A High Magnitude Impact affects an entire area, system (physical), aspect, population or species (biological) and at sufficient magnitude to cause a significant measurable numerical increase in measured concentrations or levels (to be compared with national or international limits and standards specific to the receptors) or a decline in abundance and/or change in distribution beyond which natural recruitment (reproduction, immigration from unaffected areas) would not return that population or species, or any population or species dependent upon it, to its former level within several generations.

A high magnitude impact may also adversely affect the integrity of a site, habitat or ecosystem.

A Medium Magnitude Impact affects a portion of an area, system, aspect (physical), population or species (biological) and at sufficient magnitude to cause a measurable numerical increase in measured concentrations or levels (to be compared with national or international limits and standards specific to the receptors) and may bring about a change in abundance and/or distribution over one or more plant/animal generations, but does not threaten the integrity of that population or any population dependent on it.

A medium magnitude impact may also affect the ecological functioning of a site, habitat or ecosystem but without adversely affecting its overall integrity. The area affected may be local or regional.

A Low Magnitude Impact affects a specific area, system, aspect (physical), group of localized individuals within a population (biological) and at sufficient magnitude to result in a small increase in measured concentrations or levels (to be compared with national or international limits and standards specific to the receptors) over a short time period (one plant/animal generation or less, but does not affect other trophic levels or the population itself), and localized area.

A Very Low/Negligible Magnitude Impact: Some impacts will result in changes to the environment that may be immeasurable, undetectable or within the range of normal natural variation. Such changes can be regarded as essentially having no impact, and are characterized as having a very low or negligible magnitude.

A number of considerations have been built into these Impact Magnitude Criteria including temporal, spatial, impact reversibility, direct and indirect impacts and relevant legal or policy constraints.
Table 5.6: Impact Magnitude Criteria for Bio-physical Impacts

<table>
<thead>
<tr>
<th>Category</th>
<th>Ranking</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>4</td>
<td>• Regional to national scale impact resulting in:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Medium term change and/or damage to the natural environment and its ecological processes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Reduction in regional habitat and species diversity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Direct loss of habitat for endemic, rare and endangered species of fauna and/or flora and for species’ continued persistence and viability nationally and regionally (for species unable to disperse).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Breach of environmental regulations and company policy and/or 100%-200% exceedance of international, national, industry and/or operator standard for an emission parameter.</td>
</tr>
<tr>
<td>Medium</td>
<td>3</td>
<td>• Local to regional scale impact resulting in:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Short term change and/or damage to the natural environment and its ecological processes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Direct loss of habitat crucial for species’ (including listed species) continued persistence and viability in the project area (for species unable to disperse).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Introduction of exotic species of fauna in invasive floral species replacing resident ‘natural communities’ within the project area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Environmental stress lowering reproductive rates of species within the project area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential breach of environmental regulations and company policy and/or 50%-100% exceedance of international, national, industry and/or operator standard for an emission parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Complaints from the public, authorities and possible local media attention.</td>
</tr>
<tr>
<td>Low</td>
<td>2</td>
<td>• Local scale impact resulting in:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Short term change and/or damage to the local natural environment and its ecological processes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Short-term decrease in species diversity in selected biotopes/areas within the project area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Increased mortality of fauna species due to direct impact from project activities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10%-50% exceedance of international, national, industry and/or operator standard for an emission parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Public perception/concern.</td>
</tr>
<tr>
<td>Negligible</td>
<td>1</td>
<td>• Impact largely not discernible on a local scale being absorbed by the natural environment; areas adjacent to disturbed areas absorb exodus of species able to disperse.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Up to 10% exceedance of international, national, industry and/or operator standard for an emission parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Public perception/concern.</td>
</tr>
<tr>
<td>Beneficial</td>
<td>+</td>
<td>• Activity has net positive and beneficial effect resulting in environmental improvement for example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Positive feedback from stakeholders.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential financial gains.</td>
</tr>
</tbody>
</table>
5.4.5.1.2 Determining Magnitude for Socio-economic Impacts

For socio-economic impacts, the magnitude considers the perspective of those affected by taking into account the likely perceived importance of the impact, the ability of people to manage and adapt to change and the extent to which a human receptor gains or loses access to, or control over socio-economic resources resulting in a positive or negative effect on their well-being. The quantitative elements are included into the assessment through the designation and consideration of scale and extent of the impact. Table 5.7 presents the impact magnitude criteria for socio-economic impacts.

Table 5.7: Impact Magnitude Criteria for Socio-economic Environmental Impacts

<table>
<thead>
<tr>
<th>Category</th>
<th>Ranking</th>
<th>Definition</th>
</tr>
</thead>
</table>
| High | 4 | • Major impacts on human health (e.g. serious injury).
• Significant impact on the livelihoods of individuals (i.e. access to income source restricted over lengthy period of time).
• Serious impact on access to community facilities and utilities.
• Breach of economy social policy and/or regulation. |
| Medium | 3 | • Modest impact on human health and well-being (e.g. noise, light, odor, dust, injuries to individuals).
• Medium impact on access to community facilities and utilities (e.g. access to utilities restricted for long periods (weeks) of time).
• Moderate impact on the wider economy, at a local, regional and/or national scale (e.g. only moderate levels of employment and supplies sources within Nigeria).
• Potential breach of company social policy and/or legislation. |
| Low | 2 | • Limited impact on human health and well-being (e.g. occasional dust, odors, traffic noise).
• Some impact on access to community facilities and utilities (e.g. access to cultural centers restricted to a limited extent, i.e. (days). |
| Negligible | 1 | • Possible nuisance to human health and well-being (e.g. occasional unpleasant odors)
• Inconvenience experienced in accessing community facilities and utilities (e.g. electricity supply disruption for short (hours) period of time).
• No impact on livelihood, community facilities and human health. |
| Positive | + | • Beneficial improvement to human health.
• Benefits to individual livelihoods (e.g. additional employment opportunities).
• Improvements to community facilities/utilities.
• Increased economy (e.g. local procurement, sourcing of supplies). |
5.4.5.2 Determining Receptor Sensitivity

In addition to characterizing the magnitude of impact, the other principal variable necessary to assign significance for a given impact is the value, and sensitivity/fragility of the receptor. This refers to economic, social, and/or environmental/ecological importance of the receptor, including reliance on the receptor by people for sustenance, livelihood, or economic activity, and to the importance of direct impacts to persons associated with the resource.

Impacts that directly affect people or vital natural resources are deemed to be more important than impacts that indirectly affect people or vital resources. The sensitivity of the receptor criterion also refers to potential impacts to Environmentally Sensitive Areas (ESAs) and impacts to species, including loss of endangered species, effects of introduction of invasive species, and similar environmental/ecological impacts.

There are a range of factors to be taken into account when defining the sensitivity of the receptor, which may be physical, biological, cultural or human. Where the receptor is physical (for example, soil environment) its current quality, sensitivity to change, and importance (on a local, national and international scale) are considered. Where the receptor is biological (for example, the aquatic environment), its importance (for example, its local, regional, national or international importance) and its sensitivity to the specific type of impact are considered. Where the receptor is human, the vulnerability of the individual, community or wider societal group is considered.

The receptors-sensitivity designations employed in this impact assessment process are low, medium and high which are universally acceptable.

The sensitivity/fragility/value criteria for physical, biological and socio-economic receptors are defined in Table 5.8.

Table 5.8: Physical, Biological and Socio-economic Receptor-Sensitivity/Fragility/Value Criteria

<table>
<thead>
<tr>
<th>Category</th>
<th>Ranking</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical (for example, air quality)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>3</td>
<td>All ambient conditions/concentrations exceed guideline limits and are indicative of the resource being impacted or polluted. There is no (or very little) assimilation capacity for increased concentrations/change in conditions.</td>
</tr>
<tr>
<td>Medium</td>
<td>2</td>
<td>Some ambient conditions/concentrations exceed guideline limits while others fall within the limits. There is some small assimilation capacity for increased concentrations/change in conditions. Resource use does affect other users</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
<td>All ambient conditions/concentrations are significantly lower than guideline limits and there is capacity for assimilation for</td>
</tr>
</tbody>
</table>
5.4.5.3 Significance
The significance of the impact is determined by calculating the “product” of impact magnitude and severity/fragility of the relevant receptor(s). Figure 5.2 below illustrates the process for combining the impact magnitude with the receptor sensitivity.

Figure 5.2: Impact Magnitude-Receptor Sensitivity Product Results

Based on its impact magnitude-receptor sensitivity/fragility/value score, each impact was again ranked into four (4) categories or orders of significance as illustrated in Table 5.9.
Table 5.9: Environmental impact significance rankings

<table>
<thead>
<tr>
<th>Ranking (Impact Magnitude x Sensitivity of Receptor)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-12</td>
<td>Major</td>
</tr>
<tr>
<td>6-8</td>
<td>Moderate</td>
</tr>
<tr>
<td>3-5</td>
<td>Minor</td>
</tr>
<tr>
<td>1-2</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

Negligible impacts are where a resource or receptor (including people) will not be affected in any way by a particular activity or the predicted effect is deemed to be ‘negligible’ or ‘imperceptible’ or is indistinguishable from natural background variations.

An impact of minor significance is one where an effect will be experienced, but the impact severity is sufficiently low (with or without mitigation) and well within accepted standards, and/or the receptor is of low sensitivity/value.

An impact of moderate significance is one within accepted limits and standards. Moderate impacts may cover a broad range, from a threshold below which the impact is minor, up to a level that might be just short of breaching a legal limit. The emphasis for moderate impacts is therefore on demonstrating that the impact has been reduced to a level that is ALARP (As Low As Reasonably Practicable).

An impact of major significant is one where an accepted limit or standards may be exceeded, or high magnitude impact occurs to highly valued/sensitive receptors/resources.

5.5 Impacts Discussion
The impacts discussion presented in this section is organized as follows:

- Potential impact of the proposed 80 MWp PV Solar Power Plant
- Potential impact of the proposed 132 kV transmission line to be installed as part of the Project
- Potential cumulative impacts

5.5.1 Potential Impact of the proposed PV Solar Power Plant
5.5.1.1 Pre-Construction Phase
The pre-construction phase of the proposed Project includes the following activities:

- Site selection/land take
- Mobilization of equipment, materials and personnel to site
- Establishment of laydown areas and construction workers camp
- Site clearing and preparation
Site Selection/Land take

As earlier documented in the previous chapters, the proposed Project site occupies an approximately 120 ha of land located in Kankia, Kankia LGA of Katsina State. The site is situated in a Government Reserved Area (GRA) along Katsina-Kano Road (IBB Way), in Kankia LGA. There are no residential buildings, structures and farmlands on the site.

Pre-construction surveys of the site have been undertaken and the findings of the surveys have been taken into consideration to ensure that the design of the facility responds to the identified existing environmental constraints. From the specialist investigations undertaken for the proposed energy facility development site, there were no absolute “no go” areas identified within the site.

The site is characterized by shrubs, grasses and herbs which serve as forage for livestock such as sheep, cattle, camel and goats. As noted during the baseline field survey, the livestock grazing is mostly free ranging although some pastoral farmers from the neighbouring communities such as Kauyan Maina and Kafin Dagi situated over 1 km from the Project site occasionally lead livestock, mostly cattle, to the site for grazing. It is important to note that the site is not exclusively reserved as a grazing land. The site is not known to fall within any gazetted grazing reserves or grazing routes. With the construction of the proposed PV Power Plant, the pastoral farmers will be precluded from using the Project site for further grazing. The impact magnitude is considered negligible and localized since there are abundant shrubs and grasses in the immediate surroundings of the Project site which can serve as alternative grazing land for the livestock. Also, the importance of the site for livestock grazing is considered low; no special string is attached to the use of the site for grazing as gathered from the local communities. Based on interview with residents of local communities in the study area, the Project site does not provide ecosystem services of special interest to the communities. In view of this, the significance of impacts of site acquisition for the proposed Project is considered negligible.

Mobilization of Personnel, Equipment and Materials to Site

Heavy-duty and other pieces of equipment will be moved to the Project site at the beginning of construction activities for civil work activities and equipment installation. All photovoltaic (PV) modules, electrical and structural equipment are planned to be shipped through Lagos port in Lagos State, and then trucked in “containers” to the Project site in Kankia, Katsina State by road. It is envisaged that about 500 truckloads transporting 300-400 x 40-foot containers would be required for construction phase.

The potential impact of mobilization activities discussed herein is limited to the Project site and its surrounding environment up to approximately 5 km radius.
The potential biophysical impacts associated with the mobilization activities include decrease in ambient air quality of the project area as a result of emissions from vehicles (such as trucks) that will convey materials and equipment to the site, as well as dust generation along the untarred road that leads to the Project site via the Katsina-Kano Expressway. The impacts could be more pronounced if the mobilization activities are carried out in the dry season due to the associated high prevailing wind usually recorded in the study area during the period. High noise levels from vehicular movement may also be generated during mobilization activities leading to annoyance.

However, considering that the mobilization activities will be intermittent and trucks that will transport construction equipment and PV materials to the site will not move to the project area at the same time, the impact magnitude is considered to be low. The impact is short term, localized, and reversible. The sensitivity of the current ambient air environment of the Project area is considered low judging by the values of air pollutants such as Carbon monoxide, Sulphur dioxide, Nitrogen dioxide and Total Suspended Particulates recorded in the Project site during the field data gathering. The air pollutants concentrations within the project site are generally below the Nigerian ambient air quality standards and the World Health Organization (WHO) Ambient Air Quality Guidelines. It was noted that there is high capacity for assimilation of vehicular emissions and dust associated with the mobilization activities due to low level of industrial activities in the area. The potential impacts significance of mobilization activities on the ambient air of the Project area is thus regarded as negligible.

For socio-economic environment, the mobilization of personnel, materials and equipment during pre-construction phase of the proposed Project could increase the traffic volume in the Project area as a result of movement of vehicles in and out of the Project site. The potential impacts of these activities could lead to accident, traffic congestion and annoyance from the road users especially at the untarred road that traverses the Project site to the Katsina-Kano Expressway. The distance between the Project site boundary and the expressway is approximately 100 m. The potential impact of mobilization activities on the socio-economic environment of the Project area is considered to be negative, indirect, short term, intermittent, and localized. The magnitude of the impact which is a function of duration, extent, scale, and frequency is considered low. The sensitivity of the receptor is adjudged as medium since the conditions of the expressway are noted to be in good state. Although the access road from the site to the expressway is often ply by some community residents using bicycles or motorcycles as mode of transport, the major settlements in the project's area of influence are situated over 1 km from the site. The impact significance is considered to be minor.
Establishment of Construction Laydown Areas and Construction Workers Camp

Prior to construction activities, the Project will involve the establishment of laydown areas for the storage of construction equipment and materials. Also, construction workers camp will be established. A land area of approximately 20000 m² is envisaged to be earmarked as laydown areas for the purpose of equipment storage and construction of workers camp. This will be established within the Project site. No additional land is required for construction laydown area and construction camp for both Phase 1 and Phase 2. The environmental components that are likely to be affected as a result of this activity include soil and terrestrial flora and fauna. Impact to soil includes soil compaction and potential spill contamination from construction equipment. The clearing of the laydown areas will permanently lead to loss of terrestrial flora and possibly fauna species. The impact is localized and the extent of the area to be used as laydown areas within the site is considered to be relatively small. The sensitive of the receptor (plant species) is low since the Project site is mostly characterized by herbaceous plants. The impact significance is therefore regarded as minor.

Site Clearing and Preparation

The Project site is characterized by secondary vegetation. The land will be cleared and prepared for construction activities. Site clearing will be done with the use of earth moving equipment. The principal potential impacts identified at this stage would be on the following components of the environment; terrestrial flora and fauna, soil, and ambient air. These are further analysed in the following paragraphs:

Terrestrial Flora and Fauna

Site preparation will involve the clearing of existing vegetation on the Project site. The site clearing activities will unavoidably lead to loss of terrestrial flora (vegetation) and potential negative impacts on terrestrial fauna species which may also include loss of foraging habitat.

The potential impact on the terrestrial flora is considered to be negative, direct, and site specific. The impact will be permanent due to the fact that clearing of vegetation for construction purposes cannot be reversed. The impact magnitude is considered to be high considering the size of the Project site (120 ha). However, the sensitivity/importance of the receptor is regarded as low since none of the plant species identified within the project site during the baseline survey was found to be critically endangered or endangered species based on IUCN 2014.3 classification. Only Vitellaria paradoxa which was encountered outside the Project site falls under the vulnerable category. There are no protected or spawning areas within the site. None of the following ecosystems of concern (threatened ecosystem, protected ecosystem, critical biodiversity area, area of high
biodiversity and wetlands) is present on the site. The habitat type identified within the Project site is mostly grazing land. No wetland or farmlands were noted within the site during the field survey. The site is of low biodiversity, mostly dominated by shrubs and grasses typical of secondary Sahel savannah. Only scanty trees (not more than 10 in number) are present on the site; the height of the tallest tree is approximately 9 m and the width is approximately 1.4m. Based on field observations, no biodiversity features on the site are of national/provincial importance. The clearance of the site for the development of the proposed Project will not lead to any contravention of any international, national or provincial legislation, policy, convention or regulation. The significance of the potential impact of site clearing on the existing terrestrial flora species of the Project site is therefore considered to be moderate.

While the plant species are unable to avoid the point of impact, most fauna species may be able to migrate away from unfavourable areas. Animals are generally mobile and, in most cases, can move away from a potential threat. The tolerance levels of some animal species are of such a nature that surrounding areas will suffice in habitat requirements of species forced to move from areas of impact. With regards to the clearing of the Project site for construction purpose, the potential impact on terrestrial fauna species may include loss of individual or localized population of fauna species. This is unlikely to lead to a change in conservation status of the species since none of the fauna species encountered or reported in the Project area belong to the IUNC classification of threatened animal species which include those classified as critically endangered, endangered or vulnerable. The sensitivity of the fauna species recorded on the site is low although the impact magnitude could be considered to be high due to the large area of the Project site (120 ha). The overall unmitigated impact significance is regarded as moderate.

Soil and Geology
The study area is underlain by Pre-cambrian complex. The site geotechnical survey revealed that the near-surface ground of the area was formed of compacted fine-grained sediments, such as clays and silts and a conglomerate with lateritic matrix. The results of a sieve analysis of the fine-grained sediments identified hard sandy clay. The proposed site clearing and preparation activities have potential negative direct impacts on soil environment of the Project area. The potential effects on soil include degradation due to site preparation e.g. compaction of soil as a result of the movement of earth moving equipment. Soil degradation is the removal, alteration, or damage to soil and associated soil forming processes, usually related to human activities. The stripping of vegetation or disturbance to the natural ground level over disturbance areas will negatively affect soil formation, natural weathering processes, moisture levels, soil density, soil chemistry, and biological activity. Soil degradation also includes erosion (due to
water and wind), salinization, water-logging, soil excavation, removal or burial (as in the case of cut-and-fill operations) and soil compaction.

Site clearing and preparation activities could also cause negative indirect impacts such as increased siltation in other areas away from the site causing negative impact on water sources and agriculture with potential socio-economic consequences. Increased runoff from hard standing areas could result in creation of drainage lines, which could impact on site. Uncontrolled site clearance of vegetation could lead to direct surface soil exposure and hence erosion of soil which could be significant. Soil erosion is a natural process whereby the ground level is lowered by wind or water action and may occur as a result of, inter alia chemical processes and/or physical transport on the land surface. Accelerated soil erosion induced or increased by human activity is generally considered the most geological impact in any development due to its potential impact on a local and regional scale and as a potential threat to agricultural production.

However, it is not anticipated that any major watercourses or water-bodies will be directly impacted by the proposed solar power plant as there are no natural surface water bodies within the immediate surroundings of the Project site. The nearby Kankia Dam located approximately 250 m from the site is currently abandoned for repair. The dam has a rockfill embankment for controlling movement of water. The impact magnitude is considered high as the extent of soil erosion could be high especially if the site clearing activities are carried out in the wet season. However, the soil erodibility survey of the area indicates that the Project site has a low susceptibility to erosion, primarily due to low annual rainfall and high sunlight intensity resulting into increased rate of evaporation. The potential significance of the impact of site clearing on soil and geology of the area is considered moderate.

Air Quality and Noise

The pollutants which could impair air quality during site clearing activities are particulate matter in form of dust, and NOx, CO, SOx from combustion engines of the earth moving equipment that will be used for clearing. Intermittent noise emissions could also occur from the operation of the machinery. The impact magnitude is considered to be low since the activities will be short term, intermittent, localized and reversible. The site clearing activities will take less than 1 month. The sensitivity of the air shed of the Project area is also regarded as low based on the results of air quality measurements conducted in the area during the field data gathering. In addition, there are no residential communities within the immediate surroundings of the Project site that could be potentially affected by intermittent noise emissions associated with site clearing activities. The potential impact significance is thus considered to be minor.
Socio-economic
Clearing of the project site will lead to loss of vegetation such as herbs which occasionally serve as forage for domestic animals. The impact magnitude is considered negligible and localized since there are abundant shrubs and grasses in the immediate surroundings of the Project site. Also, there are no significant tree plants within the project site which serve as major source of firewood or medicine for residents of the potentially affected communities especially women group. Thus, the impact of site clearing on socio-economic activities in the project area is considered negligible.

5.5.1.2 Summary of Potential Negative Impact Associated with Pre-Construction Phase
Table 5.10 below summarizes the potential negative impacts associated with the pre-construction phase of the proposed PV Solar Power Plant.

Table 5.10: Summary of Potential Impact of Pre-Construction Phase of the proposed Project

<table>
<thead>
<tr>
<th>Activity</th>
<th>Receptor</th>
<th>Associated Impact</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Acquisition/Land take</td>
<td>Land use for grazing</td>
<td>- Pastoral farmers from neighbouring communities will be precluded from using the site for grazing</td>
<td>Negligible</td>
</tr>
<tr>
<td>Mobilization of personnel, materials and equipment to site</td>
<td>Air Quality</td>
<td>- Air quality impacts from vehicular emissions (SPM, NOx, CO, SOx)</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Increase in noise levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Socio-economic and health</td>
<td>- Increase in vehicular movement and traffic around the project site including for road accident</td>
<td>Minor</td>
</tr>
<tr>
<td>Establishment of laydown areas and construction workers camp</td>
<td>Soil</td>
<td>- Soil compaction</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Spill contamination leading reduced soil quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terrestrial flora and fauna</td>
<td>- Vegetation loss</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Loss of fauna species</td>
<td></td>
</tr>
<tr>
<td>Site clearing and preparation</td>
<td>Terrestrial flora and fauna</td>
<td>- Vegetation loss</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Habitat fragmentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Disturbance/displacement of avifauna associated with noise from site clearing equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Direct impacts on vegetation and soil-dwelling organisms, indirect impacts on other animals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil</td>
<td>- Loss of top soil</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Soil compaction and degradation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Increased erosion potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Reduction in structural stability and percolative ability of soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmosphere (Air Quality)</td>
<td>- Air quality impacts from vehicular emissions and fugitive dust (SPM, NOx, CO, SOx)</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Increase in ambient noise levels</td>
<td></td>
</tr>
</tbody>
</table>
5.5.1.3 Construction/Installation Phase

Construction work activities for the proposed Project will include excavation, earth filling, trenching, piling, and the construction of foundations, pathways, and drainages including upgrade of dirty road for site accessibility. The construction phase activities will also include installation of photovoltaic modules (on mounting structure) and other plant facilities such as transformers, inverters, water storage tanks and other ancillary facilities. Waste generation is also associated with the construction activities which could be significant if not properly managed.

The potential environmental and social impacts associated with the construction phase of the proposed solar power plant are assessed as follows:

Air Quality

Air quality could be impacted due to dust generation from earth moving equipment and emissions (such as SO$_2$, CO, NOx) from construction equipment such as excavation and levelling equipment, lifting cranes, and diesel powered generators (which may serve as source of electricity during construction work). Dust is also likely to be generated during extraction and removal of overlying materials as well as a windblown dust generated from cleared land and exposed materials stockpiles.

It is proposed that each construction phase of the Project would take up to approximately 8 months (less than 1 year). Although emissions from the construction equipment and operations of construction vehicles could increase the existing concentrations of gaseous pollutants in the ambient air of the project site beyond the permissible limit, the potential impact is considered to be short term, infrequent, localized and reversible. The impact magnitude is considered to be medium. The sensitivity of the air shed of the Project area is regarded to be low based on the results of *insitu* measurements undertaken during field data gathering. The overall potential impact significance of construction activities on ambient air of the project site and the immediate surrounding is regarded as minor.

Noise and Vibration

The existing ambient noise levels (Leq) recorded within the Project site ranged from 51.5 dBA to 62.1 dBA (with a mean value of 57.5 dBA) while in the wider surrounding environment, the noise levels ranged between 52.1 dBA and 70.9 dBA. The noise levels recorded in the study area were generally below the Federal
Ministry of Environment (FMEnv) ambient noise standards of 90 dBA and the World Bank Noise Level Guidelines of 70 dBA for industrial and commercial areas. However, ambient noise levels recorded in some of the locations sampled during the field data gathering undertaken as part of the EIA study were higher than the World Bank prescribed noise limit of 55 dBA for residential, institutional and educational receptors in the day time.

Potential sources of noise during construction phase of the Project are the heavy equipment and machinery, vehicular movement, and civil work activities. The operation of the construction equipment may lead to elevated noise levels which could lead to hearing impairment and annoyance. The noise levels from construction activities are however not envisaged to result in a maximum increase in background levels of 3 dBA at the nearest receptor location offsite. The potential impact magnitude is regarded low. The identified sensitive receptor to the potential noise impact is Gandi Primary School (a 2-block of classroom occupying about 40 pupils on the average) located approximately 30m west of the Project site. With the exception of this, there are no residential buildings within the immediate surroundings of the site. Though it is envisaged that the construction activities will mostly be restricted to the northern and eastern parts of the site limiting the noise exposure to the receptors, the impact is regarded as moderate.

There no nearby structures within the vibration impact threshold distances of the Project site boundary. Vibration impact during construction phase of the Project is considered to be negligible.

Soil and Geology
The proposed construction activities will include excavation, loosening of soil, stockpiling, mixing, wetting, filling and these activities carry potential negative direct impacts contributing to soil degradation and possibly accelerated erosion. Soil environment of the Project site could be impacted in terms of removal of topsoil and soil compaction, reduction in structural stability and percolative ability of soil, loss of soil dwelling organisms resulting from compaction during excavation activities, foundation works, erection of temporary buildings and passage of construction traffic. These activities could also cause negative indirect impacts such as increased siltation in other areas away from the site as a result of accelerated erosion. The impact magnitude is considered to be high. The soil environment of the project area is characterized with low nutrient levels and it has low susceptibility to erosion. The overall unmitigated impact significance is considered to be moderate.

Terrestrial Flora and Fauna
The construction activities may potentially cause disturbance to flora and fauna as a result of increase in human activity, noise level, creation of areas of bare soil,
etc. which may alter the composition and diversity of plant species around the project site. In addition, the potential for plant species invasion is likely to increase as a result of increase in areas of bare soil around the project site. Also the disturbance associated with noise and movement of construction equipment and personnel at the project site may deter bird species from the area and disrupt the breeding of avifauna species. The potential impact is site specific and short term; impact magnitude is considered to be medium. The sensitivity of the receptor is adjudged to be medium due to the diversity of fauna species recorded in the area although there are no spawning areas within the project site for amphibian or fish species which could be impacted. The project area is also not known as a migratory route for avifauna species. The potential impact significance is regarded as minor.

Hydrology and Hydrogeology

The construction activities for the Project could lead to potential impacts on hydrology and hydrogeology of the Project area. These include increased sediment load in the drainage channels as a result of erosion; increased stormwater runoff from a decrease in infiltration; increased runoff from hardstanding areas which could result in creation of drainage lines. Groundwater may be impacted as a result of infiltration of contaminants associated with spills or leaks of fuels, oils and lubricants from construction vehicles or storage tanks. There could also be decrease in amount of groundwater as a result of groundwater abstraction for project activities. It is planned that at least one borehole will be dug onsite to serve as a source of water supply for the project activities. Currently, there is no borehole on the site. The nearest shallow hand dug well to the Project site is approximately 330 m north in Fanga Village, one of the villages/wards that made up of Kafin Dangi community. The depth of the well as at the time of site visit in March 2014 was approximately 70 m. Another shallow well close to the Project site is approximately 1 km southwest in Kauyan Dawa community with a depth of approximately 30 m. The hand dug wells are mostly recharged during the rainy season. The possibility of groundwater contamination as a result of the construction activities is very minimal. It is very unlikely that water abstraction for the Project development will cause significant reduction in water aquifer of the area. However, additional geotechnical survey of the project site is planned to be conducted.

The potential impact on hydrology is localized, infrequent, short term and reversible. Impact magnitude is low. The identified sensitive receptor that could be impacted is Kankia Dam, located approximately 200 m southwest of the Project site. The dam was constructed about 12 years ago by the Kastina State Ministry of Water Resources to serve as source of water for irrigation and domestic use in Kankia. At the time of site visit in March 2014, the dam was found to be non-
operational and under repair. The sensitivity of the receptor is considered to be medium. The overall potential impact significance is considered minor.

Socio-economic

The key social issues associated with the construction phase of the proposed Project include the following potential positive impacts: creation of employment, business opportunities, and the opportunity for skills development and on-site training.

The construction phase is expected to create approximately 200 employment opportunities where approximately 60 % will be low skilled positions (for examples, construction labourers and security staff) and semi-skilled workers (i.e. drivers, equipment operators, etc.) and 40 % will be available to skilled personnel. In terms of business opportunities for local companies, expenditure during the construction phase will create business opportunities for the regional and local economy. Opportunities are likely to exist for local contractors in Kankia and other neighbouring communities.

The potential opportunities for the local service sector would be linked to catering, cleaning, transport and security, etc. associated with construction workers on site. In addition, a proportion of the wage bill earned by construction workers over the construction period (8 months) is also likely to be spent in the regional and local economy. In terms of training, the foreign contractors are likely to provide on-site training and skills development opportunities. This is considered a significant positive impact.

On the other hand, the key negative issues associated with the construction phase of the proposed Project on the socio-economic environment are those related to the presence of construction workers on site and impact of heavy vehicles, including damage to roads, safety, noise and dust, and increased risk of fires associated with construction related activities.

With regards to the presence of construction workers on site, the manner in which the workers conduct themselves can affect the local communities in terms of disruption of existing family structures and social networks. The potential behaviours of workers, most especially male construction workers, may lead to an increase in levels of crime and drug and alcohol abuse, and an increase in incidence of sex workers and casual sexual relations, which may result in increase in sexually transmitted disease (such as HIV/AIDS infections) and unwanted pregnancies. Additional pressure may also be placed on existing infrastructure. Considering the relatively large number of labour force (about 200) during each construction phase of the Project, the potential risk to local family structures and social networks is regarded as high. This risk can also be heightened by the
vulnerability of the residents of the neighbouring communities of Gachi, Galadima, Kauyan Maina, Kafin Dagi and Kankia due to their low income and education levels especially those residing in Kafin Dangi and Kauya Maina communities. Bearing in mind that the majority of the construction workers, especially unskilled labour force (approximately 60%) would come from the local communities, and temporary accommodation will be provided for expatriates on site, the potential impact significance is considered to be moderate.

Regarding the impact of construction vehicles, road access to the proposed site will be via gravel roads that connect the site to the Katsina-Kano Expressway. The movement of heavy construction vehicles during the construction phase activities may damage roads, create noise, and safety impacts for other road users and local communities in the area, specifically the residents of Kafin Dangi community and Gandi village. The potential damage to grave roads that connect the project site to the Katsina-Kano Expressway by heavy equipment can result in a number of potential negative impacts, including increased wear on motorcycles owned by local residents, impact on ease of access (e.g. time delays) to town. The distance between the gravel roads to the Katsina-Kano Expressway is approximately 100 m and the roads are not heavily used by the local residents. The potential impact significance is considered to be moderate.

Visual Prominence
The construction phase of the proposed Project will last for approximately 8 months. During this period, construction related traffic (i.e. in terms of traffic and construction workers) will frequent the area and may cause a visual nuisance to other road users and landowners in the area. The potential impact significance is considered minor since the immediate surroundings of the project site is not heavily populated. The major settlements in the project's area of influence are located approximately over 2 km away.

Construction Workers Health, Safety, and Welfare
Construction sites are potentially hazardous place. Occupational accidents may occur especially when those involved are unskilled. Such occupational accidents may result in loss of man-hours which may ultimately affect the schedule date of completion of the project especially if the man-hour losses are high. Potential impacts to construction workers include increased noise level and air emissions from construction activities (resulting from the use of heavy duty equipment and construction vehicles), injuries, respiratory tract disease infections, electrical shocks, and denial of rights. Considering that the majority of the workforce will be unskilled, the overall unmitigated impact significance is considered moderate.
5.5.1.4 Summary of Potential Negative Impact Associated with Construction Phase

Table 5.11 below summarizes the potential negative impacts associated with the construction phase of the proposed PV Solar Power Plant.

Table 5.11: Summary of Potential Impact Associated with Construction Phase of the proposed Project

<table>
<thead>
<tr>
<th>Activity</th>
<th>Receptor</th>
<th>Associated Impact</th>
<th>Significance</th>
</tr>
</thead>
</table>
| Construction/Installation Activities | Atmosphere (Air Quality) | • Air quality impacts from diesel fired generators (SPM, NOx, CO, SOx)
• Increase in dust form cleared land and windblown stockpiles | Minor |
| | Atmosphere (noise impacts on nearby receptor) | • Increase in noise level from the operation of construction vehicles and construction equipment | Moderate |
| | Soil | • Increased erosion potential as a result of construction activities | Moderate |
| | Flora and Fauna | • Loss of plant species and increase in invasive species potential | Minor |
| | Hydrology and Hydrogeology | • Increased sediment load in the drainage channels as a result of erosion; increased stormwater runoff from a decrease in infiltration; increased runoff from hardstanding areas could result in creation of drainage lines | Minor |
| | Socio-economic and health | • Influx of people, increase in sexual transmitted diseases; pressure on existing infrastructure | Moderate |
| | | • Road damage, traffic and safety impacts | Moderate |
| | | • Employment opportunities for skilled and semi-skilled craftsmen from local communities | Positive |
| | Health, Safety, and Welfare of construction workers | • Injury to construction workers and during construction activities
• Poor welfare and working conditions for both skilled and unskilled worker engaged during construction phase | Moderate |
5.5.1.5 **Operation Phase**
The activities associated with the facility operation include: operation of the PV panels, routine inspection, occasional cleaning of the PV panels with water to remove dirt and soil (especially during the dry season period), and routine maintenance.

Significant environmental issues specific to the operational phase of a solar plant include, amongst others: visual impacts through the visual dominance of the PV modules within the landscape; hydrological impacts due to increased erosion; and avian mortality through collisions/electrocutions with the power (transmission) line. Others include community health and safety associated with Electromagnetic field (EMF) radiation/interference from power lines. The potential environmental and social issues related to the operation phase of the proposed Project are assessed as follows:

Air Quality
Significant emission reductions can be accomplished through PV electricity (PVe) production since PVs do not generate chemical pollutants or greenhouse gases (GHGs) during their normal operation. The potential source of air emission during the facility operation is diesel powered generator (that may be provided onsite as backup power source for minimal facility operation), and occasional emissions from vehicles during facility maintenance. The overall impact significance is considered negligible. The impact is site specific and reversible.

Noise and vibration
The potential sources of noise during the operational phase of the Project are inverters and any onsite diesel powered generator. A total of 38 Medium Voltage Power Units are planned to be installed onsite. Each MV Power unit has 2 inverters. Noise emission from the inverters is not envisaged to be significant. Typically, noise emission from an inverter is approximately 30-35 dBA. The potential impact will be site specific, permanent and reversible. There no residential communities within the immediate surroundings of the site which could be significantly affected. Impact significance is considered to be negligible.

Flora and Fauna
Impacts on flora and fauna may arise from the operations of the solar PV facility. These may include loss of plant diversity, and increase in invasive species potential. Shift may also occur in the distribution of fauna communities e.g. (mammal and reptile) as a result of PV panels providing shade and protection from birds of prey. Birds may also experience disturbance and displacement. The impact significance is regarded as minor.
Soil
Soil impacts may include the loss of topsoil, soil compaction and increase in soil erosion around the cleared areas, roads and at the foot of the PV panels due to increased run-off and effect of wind. This may result in the formation of eroded gullies that further aggravate the surface soil loss. The soil susceptibility to erosion is low, primarily due to low rainfall and predominant sandy clay in the area. The impact significance is minor.

Hydrology and Hydrogeology
Hydrology and hydrogeology impacts may include decreased amounts of groundwater as a result of abstraction for the project activities. Liquid wastes (such as sanitary waste, used water from PV cleaning) generated during the facility operations may lead to groundwater contamination if not properly managed. The impact significance is considered minor due to the absence of existing groundwater resources in the immediate surroundings of the project site and limited presence of hazardous chemical or potential for contaminated water.

Visual Nuisance
As indicated in Chapter 4, the project site is not known to be a tourist route or to have any special scenic characteristics hence it has a limited potential for visual impacts on the receiving environment. During operation, the facility (primarily the PV panels) will be visible. The potential visual nuisance impacts of the facility operations include the following:

Potential Impact on Visual Character of the Landscape of the Project Area: The sense of place is characterized by a quiet, undeveloped landscape with views of wide and open flats. Views of this landscape are found over most of the study area, as such the area is considered to be sensitive to land use change. Potential visual impacts are expected to affect residents who traverse the link roads and paths around the project site and observers travelling along the Katsina-Kankia Express road. Due to the large extent of visual exposure of the proposed facility, the visibility of infrastructure such as the solar panel is expected to be high for areas in close proximity of the facility (distances of less than 500 m). The amount of traffic is relatively low with a moderate number of possible visual receptors. Thus the significance of visual impact in terms of visibility and exposure is anticipated to be moderate.

Potential Visual Impacts from Facility Lighting at Night Time: Obstructive disturbances may be experienced by road user and community residents as a result of increase in the ambient lighting levels especially at night time, arising from artificial lighting for security and other purposes. The anticipated visual impact is not, considered to be a fatal flaw from a visual perspective, considering
the low incidence of visual receptors in the region and the contained area of potential visual exposure. The impact significance is considered moderate.

Socio-economic

The key social issues associated the operational phase of the Project include the following positive impacts:

- Creation of employment and business opportunities, and opportunities for skills development and training.
- The promotion of clean energy as an alternative energy source.

The operation phase will employ approximately 20 full time employees over a period of not less than 25 years. The proposed power plant will therefore create potential employment opportunities to the local communities in the project’s area of influence. There is also the possibility to increase the local skills levels through the implementation of training programmes to local contractors. The communities in the project area also have the opportunities of benefiting from various Corporate Social Responsibility initiatives associated with the Project.

In addition, the Project operation will lead to the promotion of clean energy as an alternative energy source. The establishment of a clean, renewable energy facility will minimize the reliance on natural-gas fired energy and the generation of carbon emissions into the atmosphere. This is regarded as a significant positive impact.

The potential negative impacts to the socio-economic environment during the facility operation are related to visual impact and associated impact on sense of place and impacts on scarce water resources. The potential impact on water resources is considered to be negligible since the project will not rely on water sources from the communities. The significance of potential visual impacts is regarded as moderate as discussed above.

Health, Safety and Welfare of Staff during Plant Operation

During plant operations, workers may be exposed to occupational health and safety issues (e.g. electrical and field exposure, shock hazards and mechanical injuries) including work related issues such as discrimination, denial of rights, unfair treatment, poor working conditions etc. The impact significance is considered to be moderate primarily due to the low number of staff required during facility operation.

5.5.1.6 Summary of Potential Negative Impact Associated with Operation Phase

Table 5.12 below summarizes the potential negative impacts associated with the operational phase of the proposed PV Solar Power Plant.
Table 5.12: Summary of Potential Impact Associated with Operation Phase of the proposed Project

<table>
<thead>
<tr>
<th>Activity and Maintenance</th>
<th>Receptor</th>
<th>Associated Impact</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation and Maintenance</td>
<td>Air Quality</td>
<td>• Minimal dust and emissions from movement of vehicles and equipment during operation and maintenance</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td>Soil</td>
<td>• Soil erosion around the cleared areas, roads and at the foot of the PV panels due to increased run-off and effect of wind result in the formation of eroded gullies.</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td>Hydrology and Hydrogeology</td>
<td>• Decreased amounts of groundwater as a result of abstraction for the project activities</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Obstructions such as foundations and roadways may concentrate water flows into catchment areas feeding surrounding drainage lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flora and Fauna</td>
<td>• Loss of plant diversity and increase in invasive species potential</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shift in mammal and reptile communities due to PV panels providing shade and protection from birds of prey.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual Impacts</td>
<td>• Landscape alterations resulting in unpleasant changes in the visual character of the area</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Obstructive increase in ambient lightning levels especially at night time, as a result of artificial lighting for security and other purposes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Socio-economic</td>
<td>• Job employment (at least 20 people would be permanently engaged during the facility operation)</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Promotion of clean energy source</td>
<td></td>
</tr>
</tbody>
</table>
5.5.1.7 Decommissioning and Abandonment Phase
The Project would have a minimum lifespan of at least 25 years. Once the facility reaches the end of its lifespan, the PV arrays may be refurbished, replaced or upgraded to a newer technology to continue operating as a power generating facility or the facility could be closed and decommissioned. If decommissioned, all components would be removed and the site rehabilitated, returning to its current land use or better. The PV panels and other major equipment would be recycled as appropriate. The decommissioning and restoration of the site will involve many activities that may have some environmental and socio-economic impacts. It is anticipated that the impacts associated with decommissioning will be similar to those encountered during the construction phase.

5.5.2 Potential Impact of the proposed Transmission Line
5.5.2.1 Construction Phase
The proposed transmission line corridor is a 30 m wide strip of land with a length of approximately 4.1 km to the existing Kankia substation. The area is occupied by bare soil, grasses, shrubs, a few subsistence farmlands. A cemetery was noted close to the transmission line connection point to the Kankia substation (approximately 100m from the substation fence line). The corridor line has been selected to ensure that no settlements are affected along the transmission line route.

Construction of transmission lines for the evacuation of power from the proposed project site to the Kankia substation will involve civil works e.g. excavation, and tower installation. The potential air quality impact during these activities includes dust generation (containing particulate matter) and emissions (such as SO₂, NOₓ and CO) from construction vehicle. Fugitive and engine emissions could cause a localized impact on air quality and will occur intermittently during construction activities. Impact is infrequent, short term and localized. The impact significance is minor.
Noise emissions are expected to result from the civil work activities related to the power line installation. The impact from noise emission is expected to be localized, infrequent and short-term. The impact magnitude is considered to be negligible. The major sensitive receptors are predicted to be the construction workers as well as residents inhabiting the immediate vicinity of the transmission line right of way. The unmitigated noise impact significance is minor.

Installation of the transmission lines will require digging, trenching and excavation of top and subsoil to a depth of at least 3m. These activities may have attendant negative impacts on the soil environment. The magnitude and extent of the impacts depend on the characteristics of the soil and the nature of the construction activities that is responsible for the soil disturbance. The significant potential impacts to the soil environment will be alteration in soil structure and soil quality of the area. The impact significance is considered to be minor.

The proposed transmission line will cover approximately 4 km. An interval of approximately 200 m will be created between one power line and the next. Minimal vegetation clearing will occur at the area where each pylon will be erected. The removal of vegetation as a result of tower construction will be minimal since the area is sparsely vegetated as observed during baseline survey. The significant of impact is rated to be minor.

The transmission lines could have a visual impact on the resident in the immediate vicinity of the power line. However, due to the presence of existing 132 kV Katsina-Kano Transmission Line in the area, the significance of visual impact on local residents is considered minor.

The acquisition of lands for the construction of the transmission lines (especially at the stations where pylons will be erected) will lead to minimal loss of privately owned land along the right of way. The impact significance is minor.

5.5.2.2 Operation Phase
The operational phase of the transmission line will have little impact on the air quality since most of the gaseous emissions associated with this project are generated during the construction phase. Thus, the significant of this impact is negligible.

Vibration or humming noise will be noticeable during the operational phase as the transmission lines become older. This usually occurs when the conductor mounting hardware becomes weaker over the years. Though, it can be repaired during maintenance of utility. Sounds which might result to noise are expected to occur along the transmission lines during period of high humidity. These are peculiar to high-voltage transmission lines and are weather dependent. They are
caused by the ionization of electricity in the moist air near the wires. This noise may have an effect on the residents living around the transmission route of way. The potential noise level from the power line is unlikely to exceed the FMEnv limits of 90 dBA respectively for 8-hour exposure. Therefore, the impact significance is predicted to be minor.

The height of transmission towers and the electricity carried by transmission lines can pose potentially fatal risk to birds and bats through collision and electrocution during the normal or regional and seasonal migration of these animals. Avian collisions with power lines can occur in large numbers if transmission lines are located within daily flyways or migration corridors, or if groups are traveling at night or during low light conditions. In addition, bird and bat collisions with power lines have the tendency to cause power outage and fire (Janss, 2000). Based on this backdrop, the overall impact significance is rated moderate although the proposed transmission route is not known to be a migratory route for birds.

Electric and magnetic field radiations occur wherever and whenever electricity is produced. Transmission lines happen to be a carrier of electricity. Though human is exposed to wide range of electric field every day, these might have an adverse impact on the health most especially those close to high magnetic field environment. There is a possibility that magnetic field generated as a result of transmission line might have an adverse impact on human health. Scientists have not been able to prove it, as most studies show a weak association between magnetic field and adverse health effects. Based on this premise, the significant of impact of the transmission line on public health is considered minor.

There are no airports in the vicinity of the proposed transmission route. Based on the field observation, the proposed transmission line route is not regarded as a flight path. Thus, potential impact of the proposed high voltage power line on aviation is negligible.

The summary of activities associated with the construction and operation of the proposed transmission line is provided in Table 5.13.
Table 5.13: Summary of Potential Impact Associated with the Construction and Operation of the proposed Transmission Line

<table>
<thead>
<tr>
<th>Activity</th>
<th>Receptor</th>
<th>Associated Impact</th>
<th>Significance</th>
</tr>
</thead>
</table>
| Construction Phase | Air Quality | • Dust and emissions from the movement of vehicles and equipment during civil work activities
 | | • Noise and vibrations resulting from construction activities | Minor | |
| | Soil | • Increase in potential for soil erosion compaction and changes in soil properties as a result of construction activities such as digging, trenching and excavation at locations where pylons will be erected. | Minor |
| | Flora and Fauna | • Disturbance, displacement of terrestrial fauna during construction activities | Minor |
| | Visual Impacts | • Landscape alterations resulting in unpleasant changes in the visual character of the area | Minor |
| | Socio Economic Receptors | • Land acquisition along transmission corridor | Minor |
| Operational Phase | Air Quality/noise | • Changes in air quality
 | | • Noise humming around power lines | Negligible | |
| | Avifauna | • Avian collision with power lines | Moderate |
| | Public Health and Safety | • Health concerns due to Electric and Magnetic fields exposure | Minor |

5.5.3 Cumulative Effects Arising from the Proposed Project

Cumulative impacts are those impacts resulting from the combined effects of past, present or reasonably foreseeable actions owing to the project aspects and activities outside the project (GSI, 2003). The concept of cumulative effects is an important one. It holds that, while impacts may be small individually, the overall impact of all environmental changes affecting the receptors taken together can be significant. When a resource is nearing its tolerance threshold, a small change can push it over.

The cumulative impacts associated with the proposed PV power plant primarily relate to those impacts associated with visual and traffic related impacts as well as impact due to Electromagnetic field (EMF) interference from transmission line.

Potential cumulative visual impacts may occur with special reference to the existing 132kV single circuit transmission line from Kano to Katsina, located nearby the proposed transmission line route for the PV power plant. The proposed Project will include construction of a dedicated project transmission line.
connecting the power plant to the Kankia substation. The line will extend approximately 1.1 km from the Project site to the existing 132 kV power line corridor and will follow this route for approximately 4 km to the Kankia substation. There is a potentially cumulative visual impact within the region as a result of the two facilities. In addition, there is cumulative EMF radiation level impact on the general public as a result of the two power lines. The cumulative effects are however considered to be low.

Potential cumulative traffic related impacts may occur especially during pre-construction and construction phase of the Project with reference to the number of vehicles plying the Katsina-Kano Expressway. A Construction Traffic Management Plan will be developed and implemented (refer to Chapter 7). Potential cumulative impact during operation phase of the power plant is considered negligible since there no current or past development projects within the immediate surroundings of the site.

5.6 Risk and Hazard Assessment

5.6.1 Overview
Risk assessment is the determination of quantitative or qualitative estimate of risk related to a concrete situation and a recognized threat (also called hazard). The assessment of the risks and hazards associated with the proposed project involves the following steps:

- Identification of hazards/risks
- Likelihood of occurrence
- Consequence/severity of the hazards

The risk assessment matrix is then developed as presented in Figure 5.3.

![Figure 5.3: Risk Assessment Matrix](image_url)
5.6.2 Project Specific Risks and Hazards

The potential risks and hazards associated with the construction and operation of the proposed PV power plant and the transmission line are described below:

Fire and Explosion

The major risk associated with the PV plant operation is fire and explosion. Photovoltaic systems are subject to electrical faults like any other electrical installation such as short circuits, ground faults and reverse currents. These faults and other failures of the system, including cable insulation breakdowns, rupture of a module, and faulty connections, can result in hot spots that can ignite combustible material in their vicinity. Wrongly installed or defect DC/AC inverters have been the reason of several photovoltaic fires as well.

Fire could possibly occur during operation of the photovoltaic power plant. Any outbreak of uncontrolled fire in the plant area can escalate to dangerous dimensions which could lead to multiple fatalities and catastrophic loss of business. The overall significance is high. Careful handling is necessary to mitigate fire and explosion risks. Detailed of the mitigation measures are provided in Section 6.4 of the next chapter.

Electrocution

Hazards most directly related to power transmission lines occur as a result of electrocution from direct contact with high-voltage electricity or from contact with tools, vehicles, ladders, or other devices that are in contact with high-voltage electricity. Although electrocution with power line is rare in the project area, the likelihood of the hazard happening is remotely possible and its severity if occurs may result into major injury and fatality. The significance of the hazard is therefore considered moderate.

Security Threat and Attack

Security systems are essential for a suitable operation of a solar farm in order to avoid damage and possibly plant downtime from theft and vandalism. The power plant may be subject to sabotage or attack and thus generate less electricity than planned as a result of uprising. Although, the current insurgency in the country is limited to some states in the North East geopolitical zone, the likelihood of terrorist attack at the project site is considered to be of remote possibility. The severity of the attack if happens would be a major injury and critical loss of process and damage to property. The risk significance is rated moderate.

Occupational Hazards

Workers may be exposed to occupational hazards when working at elevation during construction. The assembly of towers and installation of power line can pose a physical hazard to workers using lifts and elevated platforms and those...
located below due to the potential for falling objects. Also, there could be electrical hazards to workers. Common electrical accidents result in shocks and/or burns, muscle contractions, and traumatic injuries associated with falls after the shock. The likelihood of the hazards occurring is considered to be possible while its severity may lead to reportable injury and limited damage to property. The overall significance is rated moderate.

5.7 Summary

In summary, the key potential adverse impacts and risks associated with the proposed project activities have been evaluated in this chapter. The significance of these impacts and risks could be minimized to acceptable levels with the implementation of appropriate mitigation measures. Sound and cost-effective mitigation measures for the identified negative impacts are presented in the next chapter of this report.
CHAPTER SIX:

MITIGATION MEASURES
CHAPTER SIX

MITIGATION MEASURES

6.1 Introduction

Following the detailed description of the associated and potential impacts of the proposed Project in Chapter 5, the recommended mitigation measures for the identified negative impacts are presented in this chapter as well as the enhancement measures for the potential positive impacts. PASL will have principal responsibility for the implementation of all measures presented in this chapter, but may delegate responsibility to its contractors, where appropriate. The mitigation measures assigned to third party contractors shall be properly monitored.

6.2 Mitigation Measures Approach

Mitigation refers to measures or interventions necessary to avoid, minimize, reduce or offset adverse impacts. Approach for selecting appropriate mitigation measures followed the framework stated by UNEP (2002):

- Avoid adverse impacts as far as possible by the use of preventive measures;
- Minimize or reduce adverse impacts to "as low as practicable" level;
- Remediate or compensate for adverse impacts which cannot be mitigated or residual impacts which cannot be further reduced.

In proffering mitigation measures for the various negative impacts identified in the previous chapter, preference was given to avoidance or prevention of adverse impacts and where not feasible, measures which are practicable and cost-effective using best available technology were suggested to reduce and/or minimize the impacts while rehabilitation, restoration or compensation was considered as the last resort.

6.3 Mitigation Measures for the Identified Significant Negative Impacts

The recommended mitigation measures for the identified negative impacts associated with the proposed Photovoltaic (PV) Power Plant and the associated infrastructure are highlighted in Tables 6.1 to 6.3. The unmitigated potential negative impacts ranked as negligible are not included in the tables. The recommended mitigation measures are considered adequate to address the adverse impacts identified in the Chapter 5 of this report. There are no potential long-term impacts associated with the Project that cannot be mitigated to acceptable levels of residual impact.
6.4 Mitigation Measures for the Identified Project Risks and Hazards

The mitigation measures for the identified project risks and hazards are highlighted below:

Fire and Explosion
- Only PV modules which comply with international and local standards for electrical performance and safety shall be used.
- Only solar cables suitable for outdoor applications and severe weather conditions shall be used.
- Inverters shall not be mounted on combustible walls such as wood panels or combustible sandwich panels.
- Inverters shall be easily accessible and protected from severe weather conditions.
- The local fire department shall be informed of and familiarized with the photovoltaic installation.
- PV systems shall only be installed by qualified contractors.
- PV systems shall be inspected regularly by qualified professionals.
- PV systems shall be regularly checked for damage from rodents and other pests, which could compromise wiring or insulation.
- Emergency response plan shall be developed and implemented.
- Fire suppression system and equipment (such as fire extinguishers, fire notices, warning signs) shall be installed at different locations within the power plant.

Electrocution
Recommended techniques to prevent this project hazards include:
- Use of signs, barriers (e.g. use of steel posts surrounding transmission towers), and education/public outreach to prevent public contact with transmission line.
- Grounding conducting objects (e.g. fences or other metallic structures) shall be installed near power lines, to prevent shock.

Security Threat and Attack
- No authorized person(s) shall be allowed into the facility without adequate check.
- A 24-hour site security shall be put in place.
- PASL shall maintain regular communication with the Nigerian Police and other relevant local security.

Occupational Hazards
- Installation of fixtures on tower components to facilitate the use of fall protection systems;
- Provision of an adequate work-positioning device system for workers
- Hoisting and lifting equipment should be rated and maintained and operators trained in their use.
- Appropriate Personal Protective Equipment shall be worn
- Electrical installation shall be carried out by trained personnel in line with the approved procedures

6.5 Enhancement Measures for Identified Positive Impacts

6.5.1 Direct Employment and Training

The Project will give rise to direct employment opportunities across different skill levels, from unskilled to highly skilled labour. It is estimated that during each of the construction phases, at least 200 job opportunities would be created. Training for local people from skilled technicians may also be possible.

The following measures will be implemented to ensure that direct employment and training opportunities are maximised:

- A Labour and Employment Management Plan (LEMP) will be produced prior to construction, detailing percentages and numbers of the workforce to be sourced from the local area and various demographics as well as influx management. The plan will follow local and international employment guidelines and the requirements of relevant IFC Performance Standards.
- The EPC contractor will provide notification to identified representatives of Local Government of the specific jobs and the skills required for the project, prior to the commencement of construction. Subsequently, the Local Government will notify the local population prior to the commencement of construction of job opportunities and relevant skills/qualifications required to be employable on the Project.
- The EPC contractor will initiate training and skills development programmes prior to the commencement of construction, as a means of ensuring that members of the local workforce are up-skilled and can be employed on the Project.

During operational phase of the power plant, a smaller number of job opportunities will be created (about 20 people will be permanently employed). This will be a mixture of skilled labour (such as electrical and mechanical technicians) and unskilled labour (such as PV module cleaners and security personnel). Sourcing of this workforce will also be covered in the LEMP.

6.5.2 Procurement and Indirect Employment

The construction and operation of the proposed PV Power facility will create opportunities for the supply of goods and services to the Project and in turn,
indirect employment will be created in the supply chain. Other opportunities may be possible for local companies to provide catering, waste / recycling and landscaping facilities as well as goods and service providers such as carpentry, road work etc.).

The following enhancement measures will be implemented to ensure that business opportunities emanating from the Project are maximised:

- Local and regional procurement targets will be included in the Project’s LEMP.
- PASL will include requirements for local employment in the contract that it establishes with the EPC Contractor and ensure its implementation.
- The developer will offer assistance to local companies to ensure that barriers to entry are reduced; for example by assisting companies to complete the required tender documents.
- PASL will build a good relationship with the host communities through the provision of community development programmes.
Table 6.1: Mitigation Measures for the Potential Negative Impacts of the proposed Project

<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-construction Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilization of personnel, materials and equipment to site</td>
<td>Socio-economic</td>
<td>Increase in vehicular movement and traffic around the project site including potential for road accident</td>
<td>Minor</td>
<td>○ The EPC Contractor will develop and implement a construction traffic management plan (CTMP). ○ Arrangements and routes for abnormal loads (if required) will be agreed in advanced with the relevant authorities and the appropriate permit will be obtained for the use of public roads. ○ All access routes within the site will be identified and clearly demarcated. ○ Speed limits (of less than 30 km/h) will be adhered to on the Project site. ○ Off-road driving will be prohibited. ○ All vehicles used for the project should be regularly serviced and maintained. ○ PASL shall ensure that driver competency is assessed and where required driver training is provided. ○ Construction workers will be bussed to site, where required.</td>
<td>Negligible</td>
</tr>
<tr>
<td>Site clearing and preparation including establishment of laydown areas and construction workers camp</td>
<td>Soil</td>
<td>Removal of top soil and soil compaction associated with vegetation clearance and site preparation</td>
<td>Moderate</td>
<td>○ Laydown or infrastructure assembly areas not required during the operational phase of the PV power facility will be re-vegetated with indigenous vegetation to prevent erosion immediately after these areas are no longer required for construction. Any steep or large embankments that are expected to be exposed during the rainy months shall</td>
<td>Minor</td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| Site clearing and preparation including establishment of laydown areas and construction workers camp | Terrestrial Flora and Fauna | - Vegetation loss
- Habitat fragmentation
- Disturbance/displacement of avifauna associated with noise from site clearing equipment
- Direct impacts on vegetation and soil-dwelling organisms, indirect impacts on other animals | Moderate | - No herbicides shall be used on site.
- Only areas within the site needed for the project components shall be cleared
- Cleared areas which are not being used will be re-vegetated using plants or seeds of locally occurring species, as soon as practical.
- All no-go areas will be clearly demarcated. | Minor |
| Site clearing and preparation (Air quality) | Atmosphere (Air quality) | - Air quality impacts from vehicular | Minor | - Site clearing equipment shall be run and maintained under optimum fuel efficient conditions. | Negligible |
EIA OF PROPOSED 80MWp PHOTOVOLTAIC POWER PLANT PROJECT AND ASSOCIATED TRANSMISSION IN KANKIA, KATSINA STATE (DRAFT REPORT)

<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Installation Phase</td>
<td>Construction/Installation work activities</td>
<td>Soil and Geology</td>
<td>Reduction in structural stability and percolative ability of soil resulting from compaction during excavation activities, laying foundations, erection of temporary buildings and passage of construction traffic.</td>
<td>Moderate</td>
<td>- Excavation works shall not be executed under aggressive weather conditions. - Stockpiles shall be appropriately covered to reduce soil loss as a result of wind or water erosion. - Disturbed areas shall be rehabilitated as soon as possible to prevent erosion. - Work areas shall be clearly defined and where necessary demarcated to avoid unnecessary disturbance of areas outside the development footprint. - Construction vehicles will remain on designated and prepared compacted gravel roads. The additional creation of access roads will be kept to a minimum. Where roads need to be created, a dual tyre track road will be used rather than clearing the entire road width. - Fuel, oil and used oil storage areas shall be contained in bunds of 110 per cent capacity of the stored material. Fuels will be stored in above-ground storage tanks. - Spill containment and clean up kits will be available onsite and clean-up from any spill will be appropriately contained and disposed of.</td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Hydrology and Hydrogeology</td>
<td>• Increased sediment load in the drainage channels as a result of erosion</td>
<td>Minor</td>
<td>• The EPC Contractor will be required to design appropriate drainage system that takes due regards of the natural drainage system Where roads intersect natural, defined drainage lines, suitably sized pipe culverts or drive through causeways shall be installed or constructed; • Fuel, oil and used oil storage areas will be contained in bunds of 110 per cent capacity of the stored material. • Spill containment and clean up kits will be available onsite and clean-up from any spill will be appropriately contained and disposed of at a registered landfill site. • Waste receptacles shall be provided within a secured area for collection of solid waste. • Construction vehicles and equipment will be serviced regularly, and will be serviced off site.</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increased runoff from hardstanding areas could result in creation of drainage lines, which could impact on site infrastructure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Groundwater may be impacted as a result of infiltration of contaminants associated with spills or leaks of fuels, oils and lubricants from construction vehicles or storage tanks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Decreased amount of groundwater as a result of groundwater abstraction for project activities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increase stormwater runoff from a decrease in infiltration and increased surface runoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flora</td>
<td>• Loss of vegetation • Introduction of alien plants which may</td>
<td>Moderate</td>
<td>• Soil disturbance and vegetation clearing will be kept to minimum. • No herbicides will be used on site.</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Terrestrial Fauna</td>
<td>Impact on Fauna due to: o Increased human activity and associated noise; o Possible increase in hunting due to increased numbers of workers on site; o Increased potential of soil erosion and contamination of soil, which will impact</td>
<td>Minor</td>
<td>o Fires will only be allowed within fire-safe demarcated areas. o All hazardous materials will be stored in the appropriate manner to prevent contamination of the site. o All fuels and oils will be stored in bunds of 110 per cent of tank capacity. Any accidental chemical, fuel and oil spill that occur onsite will be cleaned up in a manner appropriate to the nature of the spill.</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prevent the natural recovery of the natural vegetation on the site</td>
<td></td>
<td>o All construction equipment is to be cleaned (mud and soil removed) at source before being brought to site so as to minimise the introduction of alien species. o If sand or other natural materials for building are required and brought onto site, the stored heaps will be monitored for the growth and germination of alien species and will be regularly cleared during construction. o Cleared areas which are not being used will be re-vegetated using plants or seeds of locally occurring species. o Regular monitoring will be undertaken (at least every 6 months) to ensure that alien plants are not increasing as a result of the disturbance that has taken place. o A post construction rehabilitation plan will be compiled with the aid of a rehabilitation specialist.</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Potential Impacts

Mitigation Measures
- The site fencing (where required) will be constructed in a manner which allows for the passage of small and medium sized mammals, at least at strategic places, such as along drainage lines or other areas of dense vegetation. The fence will be designed to protect the solar PV plant but also withstand any animal conflict.

- Should the development require night-lighting, these will be of the low-UV emitting types, such as most LEDs, which attract significantly less insects.

- All construction and construction related activity will be restricted to demarcated areas.

- No unauthorized persons shall be allowed onto the site.

- In order to reduce collisions of vehicles with fauna, a 30 km/hr speed limit will apply to all roads and vehicles using the site.

- Personnel shall receive environmental education so as to ensure that that no hunting, killing or harvesting of plants and animals occurs at any stage during the Project. A disciplinary procedure for workers that are caught conducting such activities shall be put forward.

- The development footprint will be kept as small as possible and natural strips of vegetation will be allowed to persist between the rows of arrays.
<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
</table>
| Civil works activities and installation of transmission lines | Avifauna | Disturbance associated with noise and movement of construction equipment and personnel at the site may deter many bird species from the area. Habitat alteration during the construction of transmission lines and associated roadways. | Minor | - Foundation holes for pylons shall be barricaded to ensure that animals are not injured by falling in the holes
- The minimum amount of vegetation along the transmission route shall be cleared
- The footprint of all construction activities and access roads shall be restricted as much as practically possible
- Disruption of any nest of avifauna species along the transmission route shall be avoided. | Negligible |
| Civil work activities, movement of construction vehicles | Air Quality | Emissions from construction vehicles and machinery. Particulate emissions due to soil disturbance | Minor | - Spraying water on soil before excavation and periodic road wetting to reduce nuisance dust levels.
- Visual inspection of dust pollution from roads and the construction site and appropriate intervention if dust levels are too high;
- Speed restriction of construction vehicles to a speed of 30 km/h or less;
- Regular maintenance and servicing of machines and engines;
- Use of clean fuels e.g., unleaded and desulphurized fuels, if available
- Ensure that vehicles sizes are optimised to reduce the number of journeys required | Negligible |
Summary of Potential Impacts

<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
</table>
| Civil work activities, movement of construction vehicles | Noise emission to sensitive receptors | Noise emission with associated effects on sensitive receptors | Moderate | - Ensure construction vehicles are turned off when not in use.
- Ensure that engines and other noise making equipment are in good working order and well maintained, and that all have original noise suppression equipment (e.g. mufflers) intact and in working order.
- Ensure that equipment and general construction activities are limited to normal working hours (8.00hr to 17.00hr during weekdays; and Saturdays between 9.00hr-16.00hr).
- Ensure that the major construction activities are limited to a particular area within the site. | Minor |
<p>| Civil work activities, Visual Prominence | Visual nuisance to road users due to construction related traffic that will frequent the project area | | Minor | - Site offices and structures will be limited to single storey and sited carefully to reduce visual intrusion. Colours will reflect hues of the surrounding vegetation and/or the ground. | Negligible |</p>
<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
</table>
| Construction work activities; presence of construction workers on site | Socio-economic | Disruption of family structure and social networks; increase in level of crime and drug and alcohol abuse, increase in incidence of sex workers and casual sexual relations, which may result in HIV/AIDS infections and unwanted pregnancies | Moderate | o The EPC Contractor will be required to ensure that areas used in construction that are not within the operational area are rehabilitated and restored to previous natural vegetation.
 o The project site will be kept free of waste, except in designated areas. Any wastes distributed by winds will be regularly cleaned up.
 o All lighting will be kept to a minimum within the requirements of safety and efficiency. Where such lighting is deemed necessary, low-level lighting, which is shielded and directed downward, to reduce light spillage will be used. | Minor |
<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unlicensed prostitution and/or solicitation; illegal sale or purchase of alcohol; sale, purchase or consumption of drugs; illegal gambling or fighting; - compliance with the Traffic Management Plan and all road regulations; - description of disciplinary measures for infringement of the CoC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o If workers are found to be in contravention of the Code of Conduct, which they will be required to sign at the commencement of their contract, they shall face disciplinary procedures that could result in dismissal. Stock theft shall be noted as a dismissible offence.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Grievance procedure that is easily accessible to local communities shall be developed, through which complaints related to contractor or employee behaviour can be lodged and responded to. PASL shall respond directly to such complaints. Key steps of the grievance mechanism include: o Circulation of contact details of ‘grievance officer’ or other key developer contacts.</td>
<td></td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>

- Creation of awareness among local communities (including all directly affected and neighbouring residents) regarding the grievance procedure and how it works.
- Establishment of a grievance register to be regularly updated, this should include all responses and response times.
- PASL shall ensure that the EPC Contractor develops a means of monitoring access to the site, prohibiting unauthorized access to the site and ensuring that all visitors report to the site office.
- No employment will take place at the entrance to the site. Only formal channels for employment will be used, and recruitment shall take place only at designated times and locations.
- PASL through its EPC Contractor shall develop and implement an HIV/AIDS policy and information document for all workers directly related to the project. The information document will address factual health issues as well as behaviour change issues around the transmission and infection of HIV/AIDS.
- PASL through its EPC Contractor shall in addition to creating awareness education about HIV and AIDS and
<table>
<thead>
<tr>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction activities including movement of project vehicles</td>
<td>Socio-economic</td>
<td>Road traffic including accidents</td>
<td>Minor</td>
<td>- Other sexually transmitted diseases, also ensure the distribution of protective sexual equipment (condoms) to both the contractor's personnel and to active residents in the potentially affected communities. PASL shall ensure that efforts to distribute sexually protective equipment amongst residents of the potentially affected is done after due consultation with health care service providers in these surrounding areas in order to align its efforts with prevailing social context in the Potentially project affected area.</td>
</tr>
<tr>
<td>Construction activities</td>
<td>Health, safety, and welfare of</td>
<td>Risk of injury and health related issues, rights denial etc</td>
<td>Moderate</td>
<td>- The EPC Contractor will develop a construction traffic management plan (CTMP). - All access routes within the site will be identified, clearly demarcated and constructed. - Speed limits (of less than 30 km/h) will be adhered to on the Project site. - Off-road driving will be prohibited. - All vehicles used for the project should be regularly serviced and maintained. - Ensure that driver competency is assessed and where required driver training is provided.</td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>construction workers</td>
<td></td>
<td></td>
<td></td>
<td>developed following all relevant national and international standards, including IFC PSs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Construction works shall be limited to the day time as much as possible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Provision of bill boards at the construction site gates notifying people of the construction activity and timings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Speed limits within the project site access roads and immediate vicinity will be limited to 30 km/hr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Implementation of Health and Safety communication and training programmes to prepare workers to recognise and respond to workplace hazards. Daily toolbox talks prior to commencement of construction activities shall be implemented and regular drills conducted involving the neighbours.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Provision of adequate personal protective equipment (PPE) to workers. All employees will be required to wear the appropriate PPE whilst performing their duties.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Provision of regularly maintained fire fighting equipment and in easily accessible areas as well as ensuring site personnel are well trained in their use, as well as maintaining them regularly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Safety training focused on operational procedures, emergency procedures and safe working practices, information on</td>
</tr>
</tbody>
</table>
Project Activities

<table>
<thead>
<tr>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>specific hazards, first aid and fire-fighting will be included in the induction, prior to the commencement of construction
 Training of workforce on communicable diseases and Sexually Transmitted Diseases (STDs) and community interactions in general. The EPC Contractor will be required to define worker accommodation requirements for construction workforce, and ensure that all contractors and subcontractors implement Worker Accommodation Guidelines, and undertake monthly audits to ensure compliance with these on contractors working on the Project.</td>
<td>Negligible</td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>including routine maintenance</td>
<td></td>
<td>o Impacts on groundwater as a result of fuel and oil spillage, or pollution from cleaning of PV panels with water containing mild detergents.
o Decreased amounts of groundwater as a result of abstraction for the project activities.
o Reduction in groundwater recharge through infiltration as a result of paved surfaces and PV panels.
o Obstructions such as foundations and roadways may concentrate water flows into catchment areas feeding surrounding drainage lines, increasing erosion.</td>
<td>Minor</td>
<td>o Bi-annual monitoring of erosion, especially in the vicinity of roads, PV arrays and other hard-standing surfaces, will be conducted before and after the rainy season to ensure erosion sites can be identified early and remedied.
o Design and implement appropriate drainage system that takes due regard of, and protects, the natural drainage at the site.
o Monitor drainage across the site after periods of heavy rain and assess adequacy of site drainage; identify potential issues and where necessary implement improvements to the drainage system.
o Site will be managed to ensure the project area remains fully vegetated throughout the project lifetime.
o The EPC Contractor will be required to develop a water conservation plan to identify opportunities to reduce water consumption, for both construction and operational phases of the project, to reduce abstraction rate.
o Any fuel, oil/used oil and chemicals on site will be stored in designated and appropriate storage facilities. Relevant operational staff shall receive training on the correct handling and emergency response procedures.</td>
</tr>
<tr>
<td>Facility operation including routine maintenance</td>
<td>Hydrology and Hydrogeology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Terrestrial Flora | | o Damage to natural vegetation through movement of vehicles and maintenance activities. | Minor | o Vegetation clearing through brush cutting for maintenance activities will be done manually wherever possible. The use of herbicides will be avoided. The potential to use sheep will be considered to maintain vegetation growth (goats or cattle are inappropriate within solar projects).
 | | o Damage due to management of vegetation, i.e. brush cutting etc. | | o Vegetation that needs to be reduced in height will be mowed or brush-cut to an acceptable height, and not to ground level except where necessary.
 | | o Introduction of alien species due to the increased levels of human activity and creation of areas of bare soil at the site | | o Any cleared areas which do not have some vegetation cover to protect the soil will be re-vegetated with local species and monitored to ensure recovery is taking place.
 | | | | o Collection or harvesting of any plants on the site shall be forbidden throughout all phases of the project.
 | | | | o Exclusive use of designated roads and accesses for vehicles; no off-road driving shall be permitted.
 | | | | o Regular monitoring for alien plants within the PV arrays will be undertaken at least every 6 months
 | | | | o Regular alien clearing will be conducted using good practice method for the species concerned. The use of herbicides will be avoided.
<pre><code> | | | | o Bare soil will be kept to a minimum, and some grass or low shrub cover will be encouraged under the PV panels. | Negligible |
</code></pre>
<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
</table>
| | Fauna | Habitat loss for resident species.
Shift in mammal and reptile communities due to PV panels providing shade and protection from birds of prey. | Minor | o Undertake monitoring of flora within the site, as part of annual ecological monitoring programme.
If the site must be lit at night for security purposes, this will be done with low-UV type lights (such as most LEDs), which do not attract insects. Night lighting will be directed downwards so as to avoid nuisance and visual impacts to neighbours.
No fires will be allowed on-site.
No unauthorized persons will be allowed onto the site.
In order to reduce collisions of vehicles with fauna, a 30 km/hr speed limit will apply to all roads and vehicles using the site.
No hunting shall be permitted within the site.
Undertake monitoring of fauna within the site, as part of annual ecological monitoring programme. This will also include recommendations for potential ecological enhancement measures that are compatible with a solar project. | Negligible |
| | Avifauna | o Disturbance or displacement of large terrestrial species and raptors by routine maintenance activities.
Minimal risk of increased mortality of large terrestrial species | Minor | o Ensure that all new above ground transmission lines are marked with bird flight diverters along their entire length, to increase the visibility of the power lines; particularly in areas where larger birds are likely to pass such as near drainage lines, dams or pans and hills. Bird flight diverters, either static or dynamic markers, | Negligible |
<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
</table>
| | | and raptors, as well as overflying birds, may result from collisions with the transmission line or by electrocution on new power infrastructure. | | are generally fitted to the upper, earth wire in most power line configurations with a recommended distance between each other of 15 to 25 m. Where new lines run in parallel with existing, unmarked power lines, this approach has the added benefit of reducing the collision risk posed by the older line.
 o Use bird-safe transmission structures (ideally with critical air gaps greater than 2 m), including insulation of electrical components and horizontal arrangement of the phases, which reduces the height of the conductors thereby minimising the risks of collision and electrocution of birds.
 o Any electrocution and collision events that occur should be recorded, including the species affected and the date. This can be done, for example, by site security during their regular patrol; staff to be provided with an environmental checklist. It is important to note that if repeated collisions occur, then further mitigation and avoidance measures will be implemented.
 o Exclude birds physically from high risk areas of live infrastructure and comprehensively insulate such areas to avoid bird electrocution;
 o Minimising the disturbance impacts associated with the operation of the facility by scheduling maintenance activities to avoid disturbances at sensitive times. | | | | |
<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td>Minimal dust and air emissions from movement of vehicles and equipment during facility operation and maintenance</td>
<td>Minor</td>
<td>○ Speed control of operation and maintenance vehicles on site to 30 km/h or less; ○ Use of clean fuels e.g., unleaded and desulphurised fuels, if clean fuel is available.</td>
<td>Negligible</td>
</tr>
<tr>
<td>Visual Prominence</td>
<td></td>
<td>Visual impacts: site is visible from receptors travelling along the Kastina-Kano Express road (IBB way), which is not known as a tourist route and receives relatively low levels of traffic</td>
<td>Moderate</td>
<td>○ Site offices and structures will be limited to single storey and sited carefully to reduce visual intrusion. Colours will reflect hues of the surrounding vegetation and/or the ground. Roofs will be grey and non-reflective. Door and window frame colour will reference either the roof or wall colours. ○ The fencing will be grey in colour. ○ Vegetation outside and around the perimeter fencing will be allowed to grow, to provide some screening of the site, particularly along the eastern boundary of the site to screen the project from the road. ○ Substations will be set into the ground as much as possible and the structures will be painted a grey green colour. ○ The area will be kept free of waste, except in designated waste storage areas. Any wastes distributed by winds will be regularly cleaned up. ○ All lighting will be kept to a minimum within the requirements of safety and efficiency. Motion detected lighting should be considered if it does not impact the site security.</td>
<td>Minor</td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| | Health, Safety and Welfare of staff including worker’s right | Exposure to injuries, electrical shock, rights denial etc | Moderate | o Where such lighting is deemed necessary, low-level LED lighting, which is shielded to reduce light spillage and pollution, will be used.
 o No naked light sources will be directly visible from a distance. Only reflected light will be visible from outside the site.
 o Security and perimeter lighting will also be shielded so that no light falls outside the area needing to be lit. Unnecessarily tall light poles will be avoided.
 o Landscape restoration of areas not fully restored during construction.
 o All structures (including panels and buildings) will be restricted to a height of less than 6m, excluding transmission towers.
 o Develop and implement human resources (HR) policy relevant to scale of the Project.
 o The HR policy will include the following key issues, among others:
 - Provision of clear and understandable information regarding rights under national labour and employment law, and any applicable collective agreements, including those related to hours of work, wages, overtime, compensation, etc.
 - Provision of employment, compensation/remuneration and working conditions, including working hours, terms of employment, based on | Minor |
<table>
<thead>
<tr>
<th>Project Activities</th>
<th>Receptors</th>
<th>Summary of Potential Impacts</th>
<th>Impact Rating</th>
<th>Mitigation Measures</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>equal opportunity and fair treatment, avoiding discrimination on any aspects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Retrenchment policy including alternatives analysis prior to decision.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Implementation of a grievance mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adoption and implementation of a sexual harassment policy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adoption of open attitude towards freedom of association.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All workers will be able to join unions of their choice and have the right to collective bargaining.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A worker grievance mechanism that will be made known to all workers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Develop and implement occupational health and safety policy and procedures including emergency plan. Staff shall be trained on emergency preparedness and responses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil</td>
<td>Soil contamination due to waste generation; soil compaction.</td>
<td>Minor</td>
<td>An approved decommissioning plan by the regulatory bodies shall be implemented prior to demolition activities.</td>
<td>Negligible</td>
</tr>
<tr>
<td>Decommissioning Phase</td>
<td></td>
<td></td>
<td></td>
<td>PV panels shall be taken offsite for appropriate recycling.</td>
<td></td>
</tr>
<tr>
<td>Removal of PV panels during decommissioning</td>
<td></td>
<td></td>
<td></td>
<td>All major electrical items will be removed from site and recycled appropriately.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All supporting structures and other materials will be removed from site and appropriately recycled</td>
<td></td>
</tr>
<tr>
<td>Project Activities</td>
<td>Receptors</td>
<td>Summary of Potential Impacts</td>
<td>Impact Rating</td>
<td>Mitigation Measures</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>---</td>
<td>---------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| Demolition of buildings and associated facilities during decommissioning | Air Quality, Noise sensitive receptors | Air quality impairment by gaseous and particulate pollutants; Increase in dust level. | Minor | o An approved decommissioning plan by the regulatory bodies shall be implemented prior to demolition activities.
 o PASL shall ensure regular cleaning of equipment to avoid excessive build-up of dirt and mud.
 o PASL shall ensure strict adherence to health and safety policy during the demolition activities. | Negligible |

Demolition of buildings and associated facilities during decommissioning

Demolition of buildings and associated facilities during decommissioning
7.1 Introduction

This chapter presents the Environmental Management Plan (EMP) for the proposed Solar Photovoltaic Power Plant (Solar farm) in Kankia, Kankia LGA of Katsina State.

EMP is a planned, integrated programme aimed at ensuring that unforeseen and unidentified impacts of a proposed project are contained and brought to an acceptable minimum.

The associated and potential impacts of the proposed Project have been analyzed in Chapter 5 of this report. The results show that if the recommended mitigation measures are implemented, the impacts of the Project are not severe and are thus acceptable. In order to ensure the environmental and social considerations and mitigation measures of the EIA are implemented, an EMP has been developed. The purpose of the EMP is to ensure that those recommended mitigation measures are translated into practical management actions, which can be adequately resourced and integrated into the Project phases.

The EMP has been developed to meet international and national standards on environmental and social management performance. It covers the pre-construction, construction, operation and decommissioning phase of the Project (Tables 7.1 to 7.3). It details the mitigation and enhancement measures PASL has committed to implement throughout the life cycle of the Project and includes desired outcomes; performance indicators; monitoring; and timing for actions and responsibilities.

PASL will have principal responsibility for all measures outlined in the EMP, but may delegate responsibility to its contractors, where appropriate and monitor the implementation.

7.2 Objectives of the EMP

The EMP is essential for successfully implementing the Project’s environmental performance throughout the life of the Project. Having this framework in place ensures a systematic approach to bringing environmental and social

9 For the purpose of this report and in line with the requirements of the Federal Ministry of Environment, the term EMP is considered to be synonymous with Environmental and Social Management Plan (ESMP) and encompasses both biophysical and socio-economic environment
considerations into decision-making and day-to-day operations. It establishes a framework for tracking, evaluating and communicating environmental and social performance and helps ensure that environmental risks and liabilities are identified, minimized and managed.

The EMP will be a living document and will continue to develop during the design and construction phases to enable continuous improvement of the Project's environmental performance.

The specific objectives of the EMP are to:

- Promote environmental and social management and communicate the aims and goals of the EMP;
- Ensure that all workers, subcontractors and others involved in the Project meet legal and regulatory requirements with regard to environmental management;
- Incorporate environmental and social management into Project design and operating procedures;
- Address concerns and issues raised in the EIA's stakeholder engagement process and those that will likely continue to arise during the Project's lifetime;
- Serve as an action plan for environmental and social management for the Project;
- Provide a framework for implementing Project environmental and social commitments (i.e. mitigation measures identified in the EIA);
- Prepare and maintain records of Project environmental and social performance (i.e. monitoring, audits and non-compliance tracking).

7.3 Environmental and Social Management Organization

PASL is committed to providing resources essential to the implementation and control of the EMP. These include appropriate human resources and specialized skills, training, programs and capacity building, communication procedures, documentation control and a procedure for the management of change.

PASL shall engage dedicated personnel competent on the basis of appropriate education, training, and experience to manage and oversee the Health, Safety and Environment (HSE) aspects of the Project. The HSE personnel shall ensure that the Project and subcontractors operate in accordance with the applicable regulatory HSE requirements and plans; and also monitor implementation of environmental and social protection measures.
7.3.1 Awareness, Training, and Capacity Building
PASL shall identify, plan, monitor, and record training needs for personnel whose work may have a significant adverse impact upon the environmental or social conditions. The Project recognizes that it is important that employees at each relevant function and level are aware of the company’s environmental policy; potential impacts of their activities; and roles and responsibilities in achieving conformance with the policy and procedures.

This will be achieved through a formal training process. Employee training will include awareness and competency with respect to:

- Environmental and social impacts that could potentially arise from their activities (including dust, noise, soil contamination etc.);
- Necessity of conforming to the requirements of the EIA and EMP, in order to avoid or reduce those impacts;
- Roles and responsibilities to achieve the required conformity, including those in respect of change management and emergency response.

Employees responsible for performing site inspections will receive training by drawing on external resources as necessary. Training will be organized as and when required and based on formally identified needs.

Similarly, the Project will require that each of the subcontractors institute training programs for its personnel. Each subcontractor is responsible for site HSE awareness training for personnel working on the job sites. The subcontractors are also responsible for identification of any additional training requirements to maintain required competency levels.

The sub-contractors training program will be subject to approval by PASL and it will be audited to ensure that: training programs are adequate; all personnel requiring training have been trained; and competency is verified.

In addition, capacity building on the operation and maintenance of the power plant and the transmission line in form of both internal and external trainings shall be provided to workers.

7.3.2 Communication
PASL will maintain a formal procedure for communicating with the regulatory authorities and communities as contained in its Stakeholder Engagement Plan (SEP). Meetings will be held, as required, between PASL and the appropriate regulatory authorities and community representatives to review environmental performance, areas of concern and emerging issues. Dealings will be transparent and stakeholders will have access to personnel and information to address
concerns raised.

The Project will also develop and implement a grievance mechanism whereby community members can raise any issues of concern. Grievances may be verbal or written and are usually either specific claims for damages/injury or complaints or suggestions about the way that the Project is being implemented. When a grievance has been brought to the attention of the Project team, it will be logged and evaluated. The person or group with the grievance is required to present grounds for making a complaint or claiming loss so that a proper and informed evaluation can be made.

Where a complaint or claim is considered to be valid, then steps are required to be undertaken to rectify the issue or agree compensation for the loss. In all cases, the decision made and the reason for the decision will be communicated to the relevant stakeholders and recorded. Where there remains disagreement on the outcome then an arbitration procedure may be required to be overseen by a third party (e.g. Government official). Local community stakeholders will be informed on how to implement the grievance procedures.

7.3.3 Documentation
PASL will control HSE documentation, including management plans; associated procedures; and checklists, forms and reports, through a formal procedure. All records will be kept on site and will be backed up at several offsite locations (including secure cloud storage facilities as may be required). Records will be kept in both hard copy and soft copy formats. And all records will be archived for future purpose.

In addition, the document control procedure will describe the processes that the Project will employ for official communication of both hardcopy and electronic document deliverables. Also, it will describe the requirement for electronic filing and posting and for assignment of document tracking and control numbers.

The subcontractors will be required to develop a system for maintaining and controlling its own HSE documentation and describe these systems in their respective HSE plans.

7.3.4 Operational Control Procedures
Each potentially significant impact identified in the EIA will have an operational control associated with it that specifies appropriate procedures, work instructions, best management practices, roles, responsibilities, authorities, monitoring, measurement and record keeping for avoiding or reducing impacts. Operational controls are monitored for compliance and effectiveness on a regular basis through a monitoring and auditing procedure described in the EMP.
Operational control procedures shall be reviewed and, where appropriate, amended to include instructions for planning and minimizing impacts, or to at least reference relevant documents that address impact avoidance and mitigation.

7.3.5 Emergency Preparedness and Response

PASL shall prepare plans and procedures to identify the potential for, and response to, environmental accidents and health and safety emergency situations and for preventing and mitigating potentially adverse environmental and social impacts that may be associated with them.

Emergency preparedness and response will be reviewed by PASL on at least an annual basis and after the occurrence of any accidents or emergency situations to ensure that lessons learnt inform continuous improvement. Emergency exercises will be undertaken on a regular basis to confirm adequacy of response strategies. Investigations of accidents or incidents will follow formal documented procedures.

7.3.6 Facilities Surveillance

This is a salient system maintenance requirement for the environmental sustainability of the Project. PASL shall carry out constant equipment and facilities surveillance to detect on time, the malfunctioning or deterioration of equipment and/or facilities. The surveillance shall aim at taking prompt corrective/repair measures on detected faults.

7.3.7 Managing Changes to Project Activities

Changes in the Project may occur due to unanticipated situations. Adaptive changes may also occur during the course of final design, commissioning or even operations. The Project will implement a formal procedure to manage changes in the Project that will apply to all project activities.

The objective of the procedure is to ensure that the impact of changes on the health and safety of personnel, the environment, plant and equipment are identified and assessed prior to changes being implemented.

The management of change procedure will ensure that:

- Proposed changes have a sound technical, safety, environmental, social and commercial justification;
- Changes are reviewed by competent personnel and the impact of changes is reflected in documentation, including operating procedures and drawings;
- Hazards resulting from changes that alter the conditions assessed in the
EIA have been identified and assessed and the impact(s) of changes do not adversely affect the management of health, safety or the environment;
- Changes are communicated to personnel who are provided with the necessary skills via training to effectively implement changes;
- The appropriate PASL person accepts the responsibility for the change.

7.3.8 Additional Management Plans

Additional detailed policies and plans will be developed to support the implementation of this EMP. The timing of the development of the plans may be staged, ensuring that the appropriate focus and level of detail is provided for construction and operational activities. Where required, the documents will be finalized by PASL in consultation with the Federal Ministry of Environment, Katsina State Environmental Protection Agency and other key stakeholders. The documents will be prepared strictly in line with the requirements set out in the relevant IFC Performance Standards and the World Bank/IFC EHS policies and guidelines as well as other applicable national and local regulations and guidelines.

The additional management plans required for the proposed Project include:
- Local and Employment Management Plan (LEMP);
- Waste Management Plan (WMP)
- Site Security Plan (SSP)
- Construction Traffic Management Plan (CTMP)
- Health and Safety Management Plan (H&SMP)
- Human Resources Management Plan
- Corporate Social Responsibility (CSR) Plan
- Emergency Response Plan (ERP)
- Land Acquisition Management Plan for the transmission right of way
- Site Closure and Restoration Plan.

7.4 Stakeholder Engagement Plan (SEP)

A SEP has been developed for the proposed project. The objectives of developing stakeholder engagement plan for the proposed Project include the following:

- Ensuring stakeholder inclusion and involvement across the various phases of the project;
- Ensuring clarity and understanding through an open, inclusive and transparent process of culturally appropriate engagement and communication undertaken to ensure that stakeholders are well informed about the proposed Project;
- Building and maintaining productive relationship between PASL and its various stakeholders through supporting open dialogue;
Engaging vulnerable groups through an open and inclusive approach to consultation thus increases the opportunity for stakeholders to provide comment and voice their concerns on the proposed Project;

Managing expectations to ensure that the proposed Project does not create or allow unrealistic expectations to develop amongst stakeholders about proposed Project benefits. The engagement process will serve as a mechanism for understanding and managing stakeholder and community expectations, where the latter will be achieved by disseminating accurate information in an accessible way.

Ensuring compliance with both local regulatory requirements and international best practice.

Ensuring stakeholders are free of external manipulation or coercion.

Details of the Stakeholder Engagement Plan are provided in Appendix 12. The SEP is will be updated and adjusted as the project progresses.

PASL is committed to implementing stakeholder management as part of its operations. As such PASL will ensure that the responsibility for implementing the SEP is duly assigned and all components of the plan are well-defined within its organizational processes. PASL shall also commit to providing the necessary support to implement the SEP. On-going consultation will be undertaken with Potentially Affected Parties (PAP), including those that use the land unofficially for grazing. The management structure for the SEP includes the following elements.

Systems: PASL will pursue its Stakeholder engagement activities as scheduled in a systematic manner that creates predictability in the eyes of the stakeholder in order to supports and foster of a relationship based on trust.

Structure: PASL will establish a Stakeholder focused-structure within its organizational processes to provide the needed decision-making authority to enable quicker turnaround time on Stakeholder engagement activities and grievance feedback.

Skills: PASL will ensure that the required internal capacity for effective Stakeholder engagement is provided for the implementation of the SEP.

PASL communication strategy shall be focus on the specific objective of engagement and the option considered most suitable to effectively pursue consultation with the concerned stakeholders. Thus, all tradition communication tools for stakeholder engagement shall be applied in a manner to suit the specific consultation requirement and situation. As such, at the local level (local government and community), the primary focus of engagement shall be direct communication via face-to-face or verbal techniques such as public meetings.
FGDs, key informant Interviews. This would be adopted to reinforce a two-way dialogue. The use of facilitators or interpreters at the local level would be adopted when necessary to ensure the information dissemination is effective and the community properly understand the project and are able to fully express their opinion.

PASL shall provide a feedback mechanism to ensure stakeholders affected by or interested in the proposed Project can present their input (e.g. opinions, requests, suggestions and grievances) for consideration and, if required, seek redress. The feedback mechanism shall function in a non-judgmental manner and record all feedback received. Grievances are any complaints or suggestions about the way a project is being implemented. They may take the form of specific complaints for damages/injury, concerns about routine project activities, or perceived incidents or impacts. Identifying and responding to grievances supports the development of positive relationships between projects host communities and other affected stakeholders. Grievances can be an indication of growing stakeholder concerns (real and perceived) and can escalate if not identified and resolved. The management of grievances is therefore a vital component of stakeholder management and an important aspect of risk management for a project.

It is anticipated that PASL will employ a Community Liaison Officer (CLO) who will serve to meet all community liaison responsibilities, in addition to the implementation and operation of the project grievance mechanism, thus fulfilling the role of Grievance Officer and CLO.

Any grievance received from stakeholders either through phone/letter, meeting, or any other correspondence will be recorded in Grievance Log and its significance assessed. The Grievance Officer will delegate resolution of grievance to relevant personnel and a response will be developed and communicated to the affected stakeholders. The grievance mechanism shall be periodically monitored by the Plant Manager or a designated Senior Management Staff.

7.5 Checking and Corrective Action

Checking includes inspections and monitoring as well as audit activities to confirm proper implementation of checking systems as well as effectiveness of mitigations. Corrective actions include response to out-of-control situations, non-compliances, and non-conformances. Actions also include those intended to improve performance.

7.5.1 Inspection

Health, Safety and Environment inspections will be conducted weekly on a specific basis and formally at least once every three (3) months. The results of the
inspection activities will be reported to PASL to be addressed.

7.5.2 Monitoring
Environmental Monitoring Plan is the systematic schedule for collection of environmental data through a series of repetitive measurements. UNEP (1996) describes three known types of environmental monitoring within the conceptual EIA framework as follows:

- **Baseline Monitoring**: Refers to the measurements of environmental parameters during the pre-project period;
- **Effects Monitoring**: Involves the measurements of environmental parameters during project construction and implementation so as to detect changes in these parameters which can be attributed to the project;
- **Compliance Monitoring**: This is the periodic or continuous measurement of environmental parameters of discharges to ensure that regulatory requirements and standards are met. Compliance monitoring can either be **Mitigative Measures Monitoring** which relates to the prescribed mitigation measures put in place by the pre-project EIA to the existing operational structure of the project, or **Regulatory Compliance Monitoring**, which compares the regulatory monitoring requirements to the existing operational, occupational and environmental parameters.

PASL shall adopt a systematic monitoring schedule that will comprise both effects and compliance monitoring plans for the implementation of the Project. Baseline requirements are already embodied in Chapter 4 of this report and are such not covered in this chapter. Monitoring shall be conducted to ensure compliance with regulatory requirements as well as to evaluate the effectiveness of operational controls and other measures intended to mitigate potential impacts. Monitoring parameters are included in the EMP.

The FMEnv guidelines require an environmental monitoring plan as part of an EIA. The aim of the monitoring programme is to ensure that the negative environmental impacts identified in this EIA are effectively mitigated in the construction, operations and decommissioning stages of the Project.

Specifically, the objectives of instituting a monitoring programme for this Project are to:
- Ensure compliance with the applicable local and IFC’s environment and social standards and guidelines;
- Ensure that regulatory standards/limits for parameters of concerns are not exceeded;
Monitor changes in existing physical, chemical and biological characteristics of the ancillary environment of the Project area. Early warning of environmental damage is thus provided so that urgent action may be taken if needed, to reduce in earnest the unwanted impact.

- Determine whether any detected changes in environmental components are caused by the Project or by other factors.
- Determine the effectiveness of the mitigation measures as well as check mitigation measures are correctly implemented.
- Highlight areas of concern undetected during the EIA study and provide a basis for recommending additional mitigation measures.

7.5.3 Auditing (Internal and External)

Beyond the routine inspection and monitoring activities, audits will be carried out internally by PASL to ensure compliance with regulatory requirements as well as its own HSE standards and policies. Audits to be conducted will also cover the subcontractor self-reported monitoring and inspection activities. The audit shall be periodic as required, with at least one audit undertaken at the beginning of each construction period and every 3 years during operational phase of the power plant facility. The audits will be performed by qualified staff and the results will be reported to PASL. All identified gaps will be addressed.

The audit will include a review of compliance with the requirements of the EIA and EMP and include, at a minimum, the following:

- Completeness of HSE documentation, including planning documents and inspection records;
- Conformance with monitoring requirements;
- Efficacy of activities to address any non-conformance with monitoring requirements.

There will be a cycle of audits into specific areas of the Project such as waste management. The frequency of audits will be risk based and will vary with the stage of the Project and will depend on the results of previous audits.

In addition, periodic auditing of the plant and operations shall be embarked on every three (3) years as required by the local regulatory authorities (FMEnv, NESREA etc.).

7.5.4 Corrective Action

Investigating a near miss or actual incident after it occurs can be used to obtain valuable lessons and information that can be used to prevent similar or more serious occurrences in the future. PASL will implement a formal non-compliance and corrective action tracking procedure for investigating the causes of, and
identifying corrective actions to, accidents or environmental or social non-compliances. This will ensure coordinated action between PASL and its subcontractors.

7.5.5 Reporting
PASL shall keep the regulatory authorities informed of the Project performance with respect to HSE matters through reports that will be made available to the regulators when required. PASL will provide appropriate documentation of HSE related activities, including internal inspection records, training records, and reports to the relevant authorities. Subcontractors are also required to provide HSE performance reporting to PASL on a regular basis through weekly and monthly reports.
Table 7.1: Environmental Management Plan: Pre-Construction and Construction Phase

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Damage to indigenous natural vegetation.</td>
<td>Bush clearing and levelling of equipment storage area[s]</td>
<td>To minimize impacts on the social and biophysical environment.</td>
<td>To limit equipment storage to the demarcated area.</td>
<td>As far as possible, minimize vegetation clearing and levelling for equipment storage areas.</td>
<td>No claims regarding damage due to unauthorized removal of vegetation.</td>
<td>EPC Contractor</td>
<td>Pre-construction and construction phase</td>
<td>Regular audits of the construction camps and areas of construction onsite.</td>
<td>Approximately 1500</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>2.</td>
<td>Soil contamination, exposure of site to external influence (security of materials)</td>
<td>Open excavations (foundations and cable trenches); Movement of construction vehicles in the area and on-site.</td>
<td>To secure the site against unauthorized entry</td>
<td>Secure site, working areas and excavations in an appropriate manner, as where necessary to control access, fence and secure area. Fence and secure EPC Contractor’s equipment camp. All development footprints for roads, buildings, underground cables, laydown areas should be fenced off with two strand wire and clearly indicated with flags and/or danger tape strips. There is to be no disturbance outside these demarcated areas. Supply adequate waste collection bins at site where construction is being undertaken. Establish the necessary ablution equipment camp as soon as construction is complete.</td>
<td>Site is secure and there is no unauthorized entry. No members of the public or landowners injured.</td>
<td>EPC Contractor</td>
<td>Pre-construction and construction phase</td>
<td>An incident reporting system will be used to record non-conformances to the EMP.</td>
<td>EHS Coordinator, PASL, Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 5000</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engagement of construction workers</td>
<td>To employ as many as possible of the low-skilled workers from the local area.</td>
<td>Ensure that as many as possible of the low-skilled workers are sourced from the local area. Where required, implement appropriate training and skills development programmes prior to the initiation of the construction phase. Identify potential opportunities for local businesses.</td>
<td>Employment and business policy document that sets out local employment and targets completed before construction phase commences.</td>
<td>EPC Contractor</td>
<td>Before construction phase commences</td>
<td>Monitor indicators to ensure that they have been met for the construction phase.</td>
<td>PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 5000</td>
</tr>
</tbody>
</table>

3. Opportunities and benefits associated with the creation of local employment

- Facilities with toilets and provide adequate sanitation facilities and ablutions for construction workers at appropriate locations on site.
- Dispose of all solid waste collected at an appropriately registered waste disposal site.
- Waste disposal shall be in accordance with all relevant legislation.

- Ensure that as many as possible of the low-skilled workers are sourced from the local area.
- Where required, implement appropriate training and skills development programmes prior to the initiation of the construction phase.
- Identify potential opportunities for local businesses.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>The presence of construction workers who live outside the area and who are housed in local towns</td>
<td>To avoid and/or minimize the potential impact of construction workers on the local community which can be achieved by maximizing the number of locals employed during the construction phase and minimizing the number of workers housed on the site.</td>
<td>Ensure that a portion of the low-skilled workers is sourced from the local area. Construction workers should be recruited from the local area in and around the towns. Develop a Code of Conduct to cover the activities of the construction workers. Ensure that all workers are informed at the outset of the construction phase of the conditions contained in the Code of Conduct.</td>
<td>Employment policy and tender documents that sets out local employment and targets completed before construction phase commences. Portion of semi and unskilled labour locally sourced. Code of Conduct drafted before commencement of construction phase. Applicable requirements of IFC Performance Standard 2 on Labour and working conditions</td>
<td>EPC Contractor</td>
<td>Monitor indicators to ensure they have been met for the construction phase.</td>
<td>PASL, Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Heavy vehicles can generate dust impacts, and can damage roads.</td>
<td>The movement of heavy vehicles and their activities on the site can result in dust impacts and damage to roads.</td>
<td>Implement dust suppression measures for heavy vehicles such as wetting roads on a regular basis and ensuring that vehicles used to transport sand and building materials are fitted with tarpaulins or covers.</td>
<td>Dust suppression measures implemented for all heavy vehicles that require such measures during the construction phase. Drivers should be made aware of the potential safety</td>
<td>EPC Contractor</td>
<td>Monitor indicators to ensure that they have been met for the construction phase.</td>
<td>EHS Coordinator, PASL, Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>6.</td>
<td>Decrease in air quality: Dust and particulates from vehicle movement to and on-site, foundation excavation, road construction activities, road maintenance activities, temporary stockpiles, and vegetation clearing affecting the surrounding residents and visibility.</td>
<td>Clearing of vegetation and topsoil. Excavation, grading, scraping, levelling, digging. Transport of materials, equipment, and components on internal access roads. Re-entrainment of deposited dust by vehicle movements.</td>
<td>To ensure emissions from all vehicles and construction engines are minimized, where possible, for the duration of the construction phase. To minimize nuisance to the community from dust emissions.</td>
<td>if wind conditions necessitate such. Ensure that all drivers are qualified and are made aware of the potential noise, dust and safety issues. Ensure that drivers adhere to speed limits. Ensure that damage to roads is repaired before completion of construction phase. Appropriate dust suppressant must be applied on all roads. Roads must be maintained to a manner that will ensure that nuisance to the community from dust emissions from road or vehicle sources is not visibly excessive. Dust suppression measures implemented for all heavy vehicles that require such measures during the construction phase commences.</td>
<td>No complaints from affected residents or community regarding dust or vehicle emissions. Issues and enforcement of strict speed limits when they are employed</td>
<td>EPC Contractor</td>
<td>Site establishment. Duration of construction</td>
<td>Monitoring must be undertaken to ensure emissions are not exceeding the prescribed levels via the following methods: Immediate reporting by personnel of any potential or actual issues with nuisance.</td>
<td>Approximately 5000</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Release of minor amounts of</td>
<td>Wind erosion from topsoil and spoil stockpiles and unsealed roads and surfaces. Fuel burning vehicle and construction engines.</td>
<td>and to comply with workplace health and safety requirements for the duration of the construction phase</td>
<td>exposed areas and stockpiles as required to minimize/control airborne dust. Vehicles moving outside the construction site carrying material that can be wind-blown must be covered with tarpaulins if required by the wind conditions. Strictly control vibration pollution from compaction plant or excavation plant. Disturbed areas must be re-vegetated as soon as practicable. Grievance procedure must be put in place for dust complaints; The use of appropriate Personal Protective Equipment (PPE) such as dust masks in particular for strict speed limits when they are employed. Applicable requirements of IFC Performance 3 on Resource Efficiency and Pollution Prevention</td>
<td></td>
<td>dust or emissions to the Site Manager. A complaints register must be maintained, in which any complaints from residents/the community will be logged, and thereafter complaints will be investigated and acted upon.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Loss of indigenous natural vegetation due to construction activities.</td>
<td>Vegetation clearing, Construction of access roads, Placement of power line and cables, Contamination of the soil by construction vehicles & machinery, Storage of materials required for construction.</td>
<td>To minimize footprints of disturbance of vegetation/habitats on-site. To minimize loss of indigenous vegetation.</td>
<td>The construction impacts must be contained to the footprint of the project development. Limit unnecessary impacts on surrounding natural vegetation must be avoided.</td>
<td>Loss of natural vegetation equivalent to the exact footprint of the proposed project. Applicable requirements of IFC Performance Standard 6 on Biodiversity Conservation and Sustainable Management of Living Natural Resources</td>
<td>EPC Contractor</td>
<td>Construction phase</td>
<td>Before construction, determine required number of hectares to accommodate footprint of proposed infrastructure. After construction, determine amount of natural vegetation lost due to construction.</td>
<td>EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 500</td>
</tr>
<tr>
<td>8</td>
<td>Avifauna collision and electrocution events with the overhead transmission line.</td>
<td>Overhead transmission line.</td>
<td>To maintain a low number of collision and electrocution events.</td>
<td>Disruption of nest of avifauna species along the transmission route shall be avoided. The power line should be kept as low as possible taking into account</td>
<td>Zero collision or electrocution events. Applicable requirements of IFC Performance Standard 6 on Biodiversity Conservation</td>
<td>EPC Contractors PASL</td>
<td>Construction Phase</td>
<td>Observation of electrocution or collision events with the power line. Monitor power line</td>
<td>EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 1000</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| | engineering and legal requirements.
The span lengths should be kept as short as possible taking into account engineering and legal requirements.
Ensure that all new above ground transmission lines are marked with bird flight diverters along their entire length, to increase the visibility of the power lines; particularly in areas where larger birds are likely to pass such as near drainage lines, dams or pans and hills. Bird flight diverters, either static or dynamic markers, are generally fitted to the upper, earth wire in most power line configurations with a recommended distance between each other of 15 to 25 m. Where new lines run in parallel and Sustainable Management of Living Natural Resources

servitude for dead birds. |
|------|------------------|----------------------|----------------|---------------------|------------------------|--|------------|-----------|-------------------------------|---|

with existing, unmarked power lines, this approach has the added benefit of reducing the collision risk posed by the older line.

Use bird-safe transmission structures (ideally with critical air gaps greater than 2 m), including insulation of electrical components and horizontal arrangement of the phases, which reduces the height of the conductors thereby minimising the risks of collision and electrocution of birds.

Any electrocution and collision events that occur should be recorded, including the species affected and the date. This can be done, for example, by site security during their regular patrol; staff to be provided with an environmental monitoring plan.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Invasion of natural vegetation surrounding the site by declared weeds or invasive alien species.</td>
<td>Construction, environmental management.</td>
<td>There is a target of no alien plants within project control area.</td>
<td>Avoid creating conditions in which alien plants may become established. Keep disturbance of indigenous vegetation to a minimum.</td>
<td>For each alien species: number of plants and aerial cover of plants within project area and immediate surroundings. Applicable requirements of EPC Contractor</td>
<td>Construction phase</td>
<td>Operational phase</td>
<td>Monitoring of area by EPC during construction Annual audit of project area and immediate surrounding</td>
<td>EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 3000</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Soil degradation.</td>
<td>Construction activity – removal of vegetation, excavation, stockpiling, compaction, and pollution of soil.</td>
<td>To minimize extent of disturbance areas.</td>
<td>Rehabilitate disturbed areas as quickly as possible. Do not import soil from areas with alien plants. Establish a monitoring programme to detect and quantify any alien species that may become established and identify the problem species immediately.</td>
<td>IFC Performance Standard 6 on Biodiversity Conservation Sustainable Management of Living Natural Resources</td>
<td>EPC Contractor</td>
<td>Construction Phase</td>
<td>Monthly inspections of the site. Monthly inspections of surrounding s, including drainage lines.</td>
<td>Approximately 1000</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>11.</td>
<td>Poor storm water management and the alteration hydrological regime.</td>
<td>Placement of hard engineered surfaces.</td>
<td>Reduce the potential increase in surface flow velocities and the impact on the localized drainage systems.</td>
<td>Rehabilitate disturbance areas as soon practicable when an area is vacated. Soil conservation: Stockpile topsoil for re-use in rehabilitation phase, protect stockpile from erosion. Control depth of excavations and stability of cut faces/sidewalls.</td>
<td>Water quality and quantity management Applicable requirements of IFC Performance Standard 3 on Resource Efficiency and Pollution Prevention</td>
<td>EPC Contractors</td>
<td>Pre-construction, Construction Operational phases</td>
<td>Storm water monitoring plan. EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 5000</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>12.</td>
<td>The potential scarring of the landscape due to the creation of new access roads/tracks or the unnecessary removal of vegetation</td>
<td>The viewing of the above mentioned visual scarring by observers near the solar facility.</td>
<td>Minimal disturbance to vegetation cover in close vicinity to the proposed solar facility and its related infrastructure.</td>
<td>Implement an environmentally responsive planning approach to roads and infrastructure to limit cut and fill requirements. Adopt responsible construction practices aimed at containing the construction activities to specifically demarcated areas thereby limiting the removal of natural vegetation cover that remains intact with unnecessary access roads or erosion scarring in close proximity of the solar facility.</td>
<td>Vegetation cover</td>
<td>EPC Contractor</td>
<td>Construction phase</td>
<td>Monitoring of vegetation clearing during the construction phase.</td>
<td>EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 1000</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vegetation to the minimum.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rehabilitate all disturbed areas to acceptable visual standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintain the general appearance of the facility in an aesthetically pleasing way.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All lighting will be kept to a minimum within the requirements of safety and efficiency. Where such lighting is deemed necessary, low-level lighting, which is shielded and directed downward, to reduce light spillage and pollution, will be used.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The containment of light emitted in order to eliminate the risk of additional night time visual impacts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>13.</td>
<td>Traffic congestion, particularly on narrow roads or on road passes where overtaking is not permitted. Risk of accidents. Deterioration of road pavement conditions (both surfaced and gravel road) due to abnormal loads.</td>
<td>Traffic congestion increase. Site preparation and earthworks. Foundations or plant equipment installation. Mobile construction equipment movement on-site.</td>
<td>To minimise impact of traffic associated with the construction of the facility on local traffic. To minimise potential for negative interaction between pedestrians or sensitive users and traffic associated with the facility construction.</td>
<td>Minimal usage of security and other lighting. Ensure that proper planning is undertaken regarding the placement of lighting structures. Undertake regular maintenance of light fixtures.</td>
<td>No traffic incidents involving PASL personnel or appointed EPC Contractors. All relevant permits for abnormal loads must be applied for from the relevant authority. The EPC Contractor will develop a construction traffic management plan (CTMP). All access routes within the site will be identified, clearly demarcated and constructed. Speed limits (of less than 30 km/h) will be adhered to on the Project site. Off-road driving will be prohibited.</td>
<td>EPC contractor</td>
<td>EPC contractor</td>
<td>Monitoring of dust produced by traffic movement. Monitoring of traffic control measures to ensure they are effective. A complaints register will be maintained, in which any complaints from the community will be logged.</td>
<td>Approximately 6000</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>Inefficient use of resources resulting in excessive waste generation. Litter or contamination of the site or water through poor waste management practices.</td>
<td>Vehicles associated with site preparation and earthworks. Power line construction activities. Packaging and other construction wastes. Hydrocarbon use and storage. Spoil material from excavation, earthworks, and site preparation.</td>
<td>To ensure that the storage and handling of chemicals and hydrocarbons on-site does not cause pollution to the environment or harm to persons. To comply with waste management guidelines.</td>
<td>Spill kits must be made available on-site for the cleanup of spills and leaks of contaminants. Corrective action must be undertaken immediately if a complaint is made, or potential/actual leak or spill of polluting substance identified. This includes stopping the contaminant from further escaping, cleaning up the affected environment as appropriate.</td>
<td>No spilling of chemicals or hydrocarbons Clean work environment</td>
<td>EPC contractor</td>
<td>Construction Phase</td>
<td>Observation and supervision of fuel storage and handling practices and vehicle maintenance throughout construction phase. A complaints register must be maintained, in which any complaints from the site are documented and monitored.</td>
<td>Complaints will be investigated and, if appropriate, acted upon. An incident reporting system will be used to record non-conformance to the EMP.</td>
<td>Approximately 3000</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>To minimise production of waste.</td>
<td>To ensure appropriate waste storage and disposal.</td>
<td>much as practically possible and implementing Spilled cement must be cleaned up as soon as possible and disposed of at a suitably licensed waste disposal site. Routine servicing and maintenance of vehicles must not take place on-site (except for emergencies). Transport of all hazardous substances must be in accordance with the relevant legislation and regulations. Construction EPC Contractors must provide specific detailed waste management plans to deal with all waste streams. Specific areas must be designated on-site for the temporary management of waste.</td>
<td>community will be logged. Observation and supervision of waste management practices throughout construction phase. Waste collection will be monitored on a regular basis. An incident reporting system will be used to record non-conformance to the EMP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>15.</td>
<td>Environmental integrity of site undermined resulting in reduced visual aesthetics, erosion, compromised land capability</td>
<td>Temporary construction areas, temporary access roads/tracks.</td>
<td>To ensure and encourage site rehabilitation of disturbed areas. To ensure that the site is appropriately rehabilitated following the execution of the works, such that residual environmental impacts are minimised.</td>
<td>Various waste streams, i.e. general refuse, construction waste (wood and metal scrap), and contaminated waste as required. Disposal of waste must be in accordance with relevant legislative requirements, including the use of licensed Contractors.</td>
<td>All temporary facilities, equipment, and waste materials must be removed from site. All temporary fencing and danger tape must be removed once the construction phase has been completed. Necessary drainage works and anti-erosion measures must be installed, where required, to minimise loss of topsoil and control erosion.</td>
<td>All portions of site, including construction equipment camp and working areas, cleared of equipment and temporary facilities. Topsoil replaced on all areas and stabilised where practical or required after construction and temporarily utilised areas. Disturbed areas rehabilitated and acceptable plant</td>
<td>Following execution of the works</td>
<td>Inspection of rehabilitated areas in order to determine effectiveness of rehabilitaion measures implemented during the operational lifespan of the facility.</td>
<td>EHS Coordinator, PASL</td>
<td>Regulatory authorities (FMEnv, KATSEPA)</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>(including erosion) are remediated or curtailed</td>
<td>Disturbed areas must be rehabilitated/re-vegetated with appropriate natural vegetation and/or local seed mix. Re-use of native/indigenous plant species removed from disturbance areas in the rehabilitation phase to be determined by a botanist as applicable. Re-vegetated areas may have to be protected from wind erosion and maintained until an acceptable plant cover has been achieved.</td>
<td>cover achieved on rehabilitated sites.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.2: Environmental Management Plan: Operation Phase

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbance to or loss of vegetation and/or habitat</td>
<td>Movement of employee vehicles within and around site</td>
<td>To maintain minimised footprints of disturbance of vegetation/habitats on-site</td>
<td>Vehicle movements must be restricted to designated roadways.</td>
<td>No further disturbance to vegetation.</td>
<td>PASL</td>
<td>Throughout the operation phase</td>
<td>Observation of vegetation on-site. Regular inspections to monitor plant regrowth/performance of rehabilitation efforts and weed infestation compared to natural/undisturbed areas.</td>
<td>EHS Coordinator, PASL, Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To ensure and encourage plant regrowth in non-operational areas of post-construction rehabilitation.</td>
<td>An environmental manager must be appointed during operation whose duty it will be to minimise impacts on surrounding sensitive habitats.</td>
<td>Continued improvement of rehabilitation efforts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Existing roads must be maintained to ensure limited erosion and impact on areas adjacent to roadways.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Environmental integrity of site undermined resulting in reduced visual aesthetics, erosion, compromised land capability</td>
<td>Constructions areas. Access roads. Other disturbed areas.</td>
<td>To ensure and encourage site rehabilitation of disturbed areas.</td>
<td>A botanist familiar with the vegetation of the area should monitor the rehabilitation success and alien plant removal on an annual basis.</td>
<td>Successful rehabilitation of disturbed areas.</td>
<td>Plant Manager, PASL</td>
<td>Throughout the operation phase</td>
<td>Alien plant monitoring and removal should be undertaken on an annual basis.</td>
<td>EHS Coordinator, PASL, Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 3000</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Disturbance to or loss of fauna and/or habitat. Direct mortalities.</td>
<td>Movement of vehicles within and around site. Power line, and access roads.</td>
<td>To keep number of vehicle movements to a minimum. To maintain minimised footprints of disturbance of vegetation/habitats onsite. To ensure and encourage site rehabilitation.</td>
<td>Vehicle movements restricted to designated roadways. Adherence to reduced vehicle speeds (as prescribed by the environmental manager) by any vehicles moving on the site to reduce potential for direct mortalities.</td>
<td>No further disturbance to faunal populations on the site. Continued improvement of faunal protection efforts.</td>
<td>Plant Manager, PASL</td>
<td>Throughout the operation phase</td>
<td>Observation and recording of mortalities associated with the solar energy facility</td>
<td>EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 2000</td>
</tr>
<tr>
<td>Collision and electrocution events with the overhead power line.</td>
<td>Overhead power line.</td>
<td>To maintain a low number of collision and electrocution events.</td>
<td>Fit the earth wire with bird marking/deterrent devices (i.e. in defined problem areas) which have proved to be extremely effective in preventing bird collisions by making the line more visible. Notes of electrocution and collision events must be noted further mitigation measures.</td>
<td>Zero collision or electrocution events.</td>
<td>Plant Manager, PASL</td>
<td>Throughout the operation phase</td>
<td>Observation of electrocution or collision events with the power line Monitor power line servitude for dead birds.</td>
<td>EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 1000</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Enhanced visual intrusion. Impact on ambient lighting conditions.</td>
<td>Size/scale of power tower. Security associated lighting. Access roads. Power line and water storage/treatment reservoirs. Other associated infrastructure.</td>
<td>To minimise potential for visual impact. Minimise contrast with surrounding environment and visibility of the associated infrastructure. The containment of light emitted from the facility in order to eliminate the risk of additional night-time visual impacts.</td>
<td>Care must be taken in the planning and placement of light fixtures in order to reduce visual impacts associated with glare and light trespass. Maintain the general appearance of the facility in an aesthetically pleasing way. Undertake regular maintenance of light fixtures. Limit access to the solar energy facility site, power line.</td>
<td>Minimised visual intrusion on surrounding areas. Appropriate visibility of infrastructure to aircraft. The effective containment of light.</td>
<td>Plant Manager, PASL</td>
<td>Throughout the operation phase</td>
<td>The monitoring of the condition and functioning of the light fixtures during the operation phase of the project.</td>
<td>EHS Coordinator, PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 3000</td>
</tr>
<tr>
<td>Inefficient use of resources resulting in excessive waste generation. Litter or contamination of the site or water through poor waste management practices.</td>
<td>Transformers Fuel and oil storage. Maintenance building. General waste generation.</td>
<td>To comply with waste management guidelines. To minimise production of waste. To ensure appropriate waste disposal. To avoid environmental harm from waste disposal.</td>
<td>Hazardous substances (such as used/new transformers) must be stored in sealed containers within a clearly demarcated designated area. Storage areas for hazardous substances must be appropriately sealed and bunded. All structures and/or components</td>
<td>No complaints received regarding waste on site or indiscriminate dumping. Internal site audits identifying that waste segregation, recycling and reuse is occurring appropriately.</td>
<td>EHS Coordinator PASL</td>
<td>Throughout the operational phase</td>
<td>Waste collection must be monitored on a regular basis. Waste documentation must be completed and available for inspection on request.</td>
<td>Regulatory authorities (FMEnv, KATSEPA)</td>
<td>Approximately 2000</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>replaced during maintenance activities must be appropriately disposed of at an appropriately licensed waste disposal site or sold to a recycling merchant for recycling. Waste handling, collection, and disposal operations must be managed and controlled by a waste management contractor. Hazardous waste (including hydrocarbons) and general waste must be stored and disposed of separately.</td>
<td>Provision of all appropriate waste manifests. No contamination of soil or water.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.3: Environmental Management Plan: Decommissioning Phase

|------------------|------------------|-----------------|-------------------------------------|------------------------|-------------------|-----------------|--|-----------------------------|-----------------------------|
| The negative air quality impacts identified during decommissioning activities are dust emission, site vehicle emission and emissions arising from traffic. | Source of impacts for air quality includes demolition of building and associated facilities; and vehicle movement. | Minimize emission impacts on sensitive receptors | ▪ An approved decommissioning plan by the regulatory bodies shall be implemented prior to demolition activities.
▪ Dust control measures such as the use of water for dust suppression shall be implemented.
▪ Vehicles are certified with efficient engine performance and minimal air pollution following regular servicing and maintenance are engaged
▪ Movement of vehicles is restricted during adverse weather condition. | Federal Ministry of Environment (FMEnv.) permissible limit
World Banks Air Quality Guidelines | Dust mitigation programme as part of Site Closure and Restoration Plan | Daily during decommissioning phase | Decommissioning Contractor | Regulatory authorities (FMEnv, KATSEPA) | 2000 |
| Noise nuisance impacts from demolition activities. | Source of impacts for noise include demolition of buildings and associated facilities; and vehicle movement. | Reduce noise nuisance at receptor. | ▪ Site demolition equipment is run and maintained under optimum fuel efficient conditions;
▪ Noise impacts are reduced by enclosing and insulating noise emitting processes or equipment where possible.
▪ Ensure that engines and other noise making decommissioning equipment are in good working order and well maintained, and that all have original noise suppression equipment (e.g. mufflers) intact and in working order.
▪ Equipment and general demolition activities that produce noise shall be limited to normal working hours | Noise at sensitive receptors not to exceed Nigerian and WHO limits | Noise monitoring at sensitive receptors during decommissioning. Measurement of noise levels will be conducted using an integrated sound meter. | Weekly during decommissioning | Decommissioning Contractor | EHS Coordinator
PASL
Regulatory authorities (FMEnv, KATSEPA) | 1000 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential contamination from spills</td>
<td>Demolition activities</td>
<td>Minimize risk of soil contamination and siltation of water resources.</td>
<td>▪ Minimization of excavation during decommissioning to reduce erosion.</td>
<td>Visual inspection</td>
<td>Visual inspection and photographic record.</td>
<td>Daily during decommissioning phase</td>
<td>Decommissioning Contractor</td>
<td>EHS Coordinator PASL</td>
<td>1000</td>
</tr>
<tr>
<td>Waste Generation</td>
<td>Decommissioning activities</td>
<td>Reduce waste generation and ensure wastes are appropriately managed</td>
<td>▪ PASL shall ensure that PV panel and major equipment are returned to the manufacturer for recycling</td>
<td>Applicable requirements of IFC Performance Standard 3 on Pollution Prevention</td>
<td>Volume of waste generated Waste consignment notes</td>
<td>Throughout decommissioning phase</td>
<td>PASL</td>
<td>Regulatory authorities (FMEnv, KATSEPA)</td>
<td>5000</td>
</tr>
<tr>
<td>Potential groundwater contamination from spills</td>
<td>Decommissioning activities</td>
<td>Prevent contamination of groundwater resources/ aquifers</td>
<td>▪ Store hydrocarbons, fuel and lubricant in tight storage containers with bund walls.</td>
<td>Nigerian Water Quality Standard for Drinking Water. World Health Organization</td>
<td>Groundwater sampling and laboratory analysis. The groundwater monitoring parameters</td>
<td>Post decommissioning</td>
<td>Decommissioning Contractor</td>
<td>EHS Coordinator PASL</td>
<td>3000</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Employment and economy issues during decommissioning include: loss of direct and contracted employment; loss of indirect business opportunities; decline in economic productivity and household income</td>
<td>Decommissioning</td>
<td>Minimize impacts on Employment issues associated with loss of Employment following decommissioning of project</td>
<td>▪ An approved decommissioning plan by the regulatory bodies shall be implemented prior to demolition activities. ▪ Implement a site-specific SHE management system integrating a strong emphasis on the protection of water resources. (WHO) limits for potable water. will include heavy metals and hydrocarbon s among others.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(FMEnv, KATSEPA)</td>
<td>1000</td>
<td>7500</td>
</tr>
<tr>
<td>As with the construction and operation phases the potential workplace health and safety impact will include: accidents, safety related to dismantling of equipment and cables, explosion, fire, noise nuisance, traffic related accident etc.</td>
<td>Decommissioning activities</td>
<td>Minimize any potential accidents that may occur during decommissioning particularly with demolition and removal activities</td>
<td>▪ Conduct tool box talks on a daily basis ▪ Routine safety checks in line with standard safety procedures. ▪ Provision and use of required personal protective equipment. ▪ Provision of fire fighting suppression system and regular communication with local fire services. Nigerian H&S law (Nigerian Institute of Safety Professionals, Factories Act 1990), the adherence to Occupational Health and Safety Guideline, and incidents record</td>
<td>Health & Safety Management Policy</td>
<td>Throughout decommissioning</td>
<td>PASL HSE</td>
<td>Regulatory authorities (FMEnv, KATSEPA)</td>
<td>1000</td>
<td>286</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Potential public health and safety impact during decommissioning include traffic accident, fire outbreak, explosion</td>
<td>Decommissioning Activities</td>
<td>Minimize the likelihood of incidents or accidents to the general public</td>
<td>• Warning signs in place, including those for electrical equipment safety warning. • Members of the public shall only be allowed to decommission site on the approval site HSE office and will be enforced to use appropriate personal protective equipment. • An approved decommissioning plan by the regulatory bodies shall be implemented prior to demolition activities.</td>
<td>Nigerian H&S law (Nigerian Institute of Safety Professionals, Factories Act 1990), the adherence to Public Health Guideline, and incidents record Applicable requirements of IFC Performance Standard 4 on Community Health, Safety and Security</td>
<td>Health & Safety Management Policy</td>
<td>Throughout decommissioning</td>
<td>Decommissioning Contractor</td>
<td>EHS Coordinator PASL Regulatory authorities (FMEnv, KATSEPA)</td>
<td>500</td>
</tr>
</tbody>
</table>
CHAPTER EIGHT:

DECOMMISSIONING AND ABANDONMENT
CHAPTER EIGHT

DECOMMISSIONING AND ABANDONMENT PLAN

8.1 Introduction

This chapter presents an overview of the decommissioning plan for the proposed Project. Decommissioning refers to the process of removing all the operating assets of a project after completion of its life cycle from the project site. This process includes the dismantling and removal of equipment and plant structures; the removal of surface installations; and re-vegetation to bring back the Project site to its original status as much as possible.

The proposed Project is being developed for a projected 25-year operational life time. However, with regular maintenance, it is anticipated that the useful life of the Project could extend well beyond the design life span.

Consistent with industry standards, decommissioning activities will commence when the power plant facilities are at the end of their life span and are no longer required for operations. In the event of decommissioning, PASL shall ensure that the decommissioned site is left in a safe and environmentally acceptable condition. A standard decommissioning, abandonment and closure programme shall be invoked. The task will include:

- Restoration of the Project environment to baseline conditions (as much as practicable) in line with legislative and regulatory requirements;
- Assessing the residual impact, if any, the Project has on the environment;
- Monitoring the abandoned Project environment as necessary
- Identification of appropriate recycling routes for panels and major electrical items, and/or where safe and appropriate re-use.

8.2 Decommissioning Programme

When PASL decides to decommission and shut down the power plant permanently, a comprehensive abandonment, decommissioning and closure plan shall be developed taking into account the most cost-effective and best practicable methods, legal requirements and industry practices at that time.

The decommissioning plan will be submitted to the Federal Ministry of Environment (FMEnv) and other relevant regulatory agencies for approval, at least two (2) years prior to scheduled abandonment and decommissioning.
The plan will specify all activities that will be undertaken during the decommissioning and abandonment phase of the Project. In addition, the decommissioning plan will contain processes that lead to a complete restoration of the Project environment suitable for its planned re-use as well as the schedule of activities. PASL will only begin decommissioning activities after due approval of decommissioning plan by the regulatory agencies.

Typically, the following steps shall be undertaken for decommissioning:

- To ensure that due consideration is given to all options a detailed evaluation of facilities decommissioning options will be carried out. The evaluation will consider environmental issues in conjunction with technical, safety and cost implications to establish the best practicable environment friendly options for the Project decommissioning.
- A risk assessment will be conducted to ensure that nothing, which could be constituted as a hazard for other users of the site or for the environment in general, will be left at the site. The site will be left in a safe and environmentally acceptable condition.
- The appropriate regulatory authorities (and concerned stakeholders including the host communities) shall be consulted and notified of the Project status.
- Hazard identification and analyses shall be conducted to determine special safety concerns to be addressed.
- An appropriate Health, Safety and Environment (HSE) plan shall be implemented to ensure the decommissioning activities for the power plant are carried out in an environmentally sound manner and in conformity with existing environmental safety laws and regulations guiding such operations.
- Third party notifications shall be carried out before any demolition and shall be conducted in a phased sequence.
- An effective waste management plan shall be developed for the decommissioning activities. The decommissioning options for redundant structures and equipment will include: the complete dismantling of structures and equipment and the return of all components to the equipment manufacturer for recycling. Appropriate recycling opportunities will be identified; this may require transporting the components out of the country to appropriate facilities.

8.3 Abandonment

Prior to site abandonment, PASL shall establish a standard procedure for incorporating the following practices:
8.4 Site Remedial Measures

- Dismantling of all equipment and associated facilities;
- Removal of all concrete structures;
- Remediation of any impacted soil;
- Backfilling with clean soil/sand where required; and
- Re-vegetation of the site with native plant species.

The decommissioning, abandonment and/or closure programme shall generally be managed by a team of competent personnel, and witnessed by relevant regulatory officials. A close out report shall be prepared and archived for future reference.
CHAPTER NINE:

CONCLUSIONS
CHAPTER NINE

CONCLUSIONS

9.1 Conclusions

PASL is planning to establish a Photovoltaic solar energy facility and associated infrastructure in Kankia, Kankia LGA of Katsina State. The proposed total capacity of the solar facility is 80 MWp, which is planned to be developed in two (2) phases.

The EIA of the proposed Project has been undertaken in accordance with the EIA Act No 86 of 1992, the EIA Act CAP E12 Law of Federal Republic of Nigeria, 2004 and the requirements of the Development Finance Institutions (DFIs) such as the International Finance Corporation (IFC).

The study involved a number of key steps including: desktop review, scoping, stakeholder consultation, field sampling and analysis, potential impact identification and evaluation, development of impact management plan, and reporting.

The essence of the EIA process was aimed at ensuring informed decision-making and environmental accountability, and to assist in achieving environmentally sound operation throughout the life cycle of the proposed Project.

Consistent with the regulatory standards, the assessment of the environmental status and the socio-economic aspects of the proposed Project’s area of influence was carefully carried out using universally accepted methodology. Evaluation of associated and potential impacts of the Project identified both positive and negative interactions with the receiving biophysical and socio-economic environment.

The positive implications of establishing the solar power plant project on the identified site within the Kankia LGA, Katsina State include:

- The potential to harness and utilize solar energy resources.
- The National electricity grid in Katsina State would benefit from the additional 80 MWp power (electricity) to be generated.
- Promotion of clean, renewable energy.
- Creation of local employment, business opportunities and skills development in the project area.

There are no human uses of the Project site that will be permanently displaced and no relocation of community residents is required. There are no culturally...
significant sites or heritage resources within the project area that would be negatively impacted. No environmental fatal flaws were identified with the establishment of the proposed power plant.

The most significant threat to avifauna communities would be from collisions with the overhead power line. The loss of habitat, disturbance, or any interaction with the facility is not anticipated to have a significant negative impact on bird communities in the area. The anticipated visual impact is not considered to be a fatal flaw from a visual perspective, considering the low incidence of visual receptors in the region and the contained area of potential visual exposure.

The potential negative effects identified were mostly of minor to moderate significance. The significance levels of the majority of identified negative impacts can generally be reduced by implementing the recommended mitigation measures including good industry practices.

Based on the nature and extent of the proposed Project, the local level of disturbance predicted as a result of the construction and operation of the solar power plant and associated infrastructure, the findings of the EIA, and the understanding of the significance level of the potential environmental impacts, it is believed that the potential negative impacts associated with the proposed Project can be mitigated to an acceptable level. Also, an Environmental Management Plan (EMP) has been established to assess the efficiency and the effectiveness of the mitigation measures and long-term monitoring of the Project.

PASL will ensure the proposed Project is developed and operated in an environmentally sustainable manner, in compliance with national and IFC environmental and social standards and by properly managing the processes/activities that may bring about disturbances to the environment through the implementation of the recommended mitigation measures.
REFERENCES
REFERENCES

state, Nigeria. pp. 303-308.
 ISBN 97892 4 1563987
APPENDIX 1

CERTIFICATE OF OCCUPANCY
KATSINA STATE OF NIGERIA
LAND USE ACT NO. 6 OF 1978
CERTIFICATE OF OCCUPANCY NO. K.I. 15,687
(Building Site)

THAT IS TO CERTIFY THAT

PAN AFRICA SOLAR LIMITED

whose address is No. 1 OCHIYIA CRESNZNO, OFF DELAISE YARD, ALONG NAVAL
AIRCRAFT, IWOZI

(hereinafter called the Holder/s, which term shall include any

person defined as such in section 50 of Land Use Act No. 6 of 1978 who are entitled to a right

of occupancy in and over the land described in the Schedule, and more particularly
delineated in the plan annexed hereto for a term of

Sixty

Years commencing from the 31st day of Oct., 2002

according to the true intent and meaning of the Land Use Act and subject to the provisions
thereof and the following special terms and conditions:

1.1 To pay in advance without demand to the Governor of Katsina State of Nigeria,

hereinafter called the Governor) or other person appointed by him.

a. the proportion of rent at the rate of N: 525,000.00

per annum applicable to the period (if any) from the said date of commencement to

the thirty-first day of December, 2002, Within two months from the date of this

certificate; and thereafter

c. the yearly rent of N: 525,000.00

on the first day of January in each year, and

the revised rent as hereinafter provided.

2. To pay and discharge all rates, taxes, assessments, and impositions whatsoever which

are at any time be charged, assessed, or imposed on the said land or any part thereof or any

building thereon, or upon the occupier or occupiers thereof.

3. To pay forthwith without demand to the Governor or other person appointed by him on the

issue of this certificate (if not sooner paid) all survey fees, registration fees and other charges

due in respect of the preparation and issue and registration of this certificate.

4. Within two years from the date of the commencement of this right of occupancy to erect

and complete on the said land the buildings or other works specified in detailed plans approved
to be approved by the

Deputy or other officer appointed by the Governor, such buildings or other works to be "(of the

value of not less than N: 77,500,000.00

of such a value as will bring the total value of all those on the land to N:

and to be erected and completed in accordance with such plans and to the satisfaction of

the said

Deputy or other officer appointed by the Governor.

(5) To maintain in good substantial repair to the satisfaction of the said or any officer appointed by the Governor, all buildings on the said land (whether now erected or to be erected in pursuance of sub-clause (4) hereof.)

(6) To clear and keep clear the said land of stagnant water, long grass, rank weeds and bush and accumulations and deposits of rubbish and other unwholesome matter, and to keep the same in all respects in a clean and sanitary condition, and for such purposes to do and execute all such acts and works as the Governor or any officer authorized by him may reasonably require.

(7) To conform to all rules laid down from time to time in regard to the location of buildings, refuse pits and latrines.

(8) After the period specified in sub-clause (4) above, not to allow the said land to be unoccupied for any period exceeding six months at any one time, or eight months in any year.

(9) Upon the expiration of the said term to render up to the Governor in good and substantial repair to the satisfaction of the said all buildings on the said land erected in pursuance hereof which have not been removed with the consent of the Governor and all buildings already upon the said land at the commencement of the said term which have not been removed.

(10) Not to erect or build or permit to be erected or built on the said land any buildings other than those covenanted to be erected by virtue of this certificate of occupancy nor to make or permit to be made any addition or alteration to the said buildings to be erected or buildings already erected on the land except in accordance with plans and specifications approved by the said Governor in his behalf.

(11) Not to alienate the right of occupancy hereby granted or any part thereof by sale, assignment, mortgage, transfer or possession, sub-lease or bequest or otherwise howsoever without the consent of the Governor first had and obtained.

(12) To use the said land only for the purposes of: SOLAR POWER PLANT

2. (1) For the purpose of the rent to be paid under this certificate of occupancy the term of the right of occupancy shall be divided into periods of 30 years, and the Governor may, as near as conveniently may be, to the expiration of each period of 30 years, revise the rent and fix the sum which shall be payable for the next period of 30 years, or, if less than 30 years of the term shall remain, for the remainder of the term. If the Governor shall so revise the rent, he shall...
R. of O. No. KT15,687
LAND GRANTED TO NIGERIAN GERMAN ENERGY PARTNERSHIP
SOLAR FARM PANN-AFRICA SOLAR LTD.
CACHI, KANKIA
KANKIA LOCAL GOVERNMENT AREA

SURVEYOR GENERAL
OCT. 2012

U. T. M. Coordinates of KK1932
N. 1350 247.34 m
E. 277 574.66 m
U. T. M. ZONE 30P
Caused a notice in writing to be sent to the holder/holders informing him/them of the revision of the rent, and the holder/holders shall thereupon within one month of the date of the receipt of such notice or within seven days of the commencement of the period for which the rent has been revised, whichever shall last happen, without further demand pay to the Governor or other person appointed by him, the difference between the unrevised rent and the revised rent for the period (if any) between the date of revision and the thirty-first day of December in the year then current; and thereafter the holder/holders shall pay in advance on the first day of January in each year without demand to the Governor or other person appointed by him in lieu of the said yearly rent of ₦25,000.

Such revised rent as may for the time being be payable in respect of the said land.

(2) If the yearly rent for the time being payable in respect of the said land or any part thereof shall be in arrears for the space of three months, whether the same shall or shall not have been legally demanded, or if the holder/holders become bankrupt or make a composition with creditors or enter into liquidation, whether compulsory or voluntary, or if there shall be any breach or non-observance of any of the occupier's/occupiers covenants or agreements herein contained, then and in any of the said cases it shall be lawful for the Governor at any time thereafter to re-enter upon the said land or any part thereof in the name of the whole and henceforth hold and enjoy the same as if the right of occupancy had not been granted but without prejudice to any right of action or remedy of the Governor for any antecedent breach of covenant by the holder/holders.

DATED this 5th day of June, 2004

Given under my hand the day and Year above written.

[Signature]

The Governor
Katsina State of Nigeria
SCHEDULE

All that piece of land consisting of 50.00 acres situated at Gachi, Kankia Local Gov't Area, the corners of which are marked on the ground by Beacons Nos. KK 1954, KK 1955, KK 1932, and KK 1966, and the boundaries of which are delineated by a surveyed line on the attached plan No. R. of 05/01/01, copied from an approved plan No. R. of 05/01/01, deposited in the Office of the Surveyor-General, Survey Office, Ministry of Lands & Surveys, Katsina.

The piece of land is more particularly described as located at Gachi, Kankia, Kankia Local Gov't Area.
APPENDIX 2

PREVIOUS EIA CERTIFICATE AND OTHER APPROVAL DOCUMENTS
The Honourable Commissioner,
Ministry of Resource Development,
Katsina State Government,
24 Hassan Usman Katsina Road,
Katsina,
Katsina State

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) APPROVAL FOR
THE PROPOSED 20 MW SOLAR POWER PLANT PROJECT AT
KANKIA, KANKIA L.G.A., KATSINA STATE

Please refer to the letter from His Excellency, Executive Governor of Katsina State, dated 5th September, 2013 requesting for an EIA permit for the above project.

2. Following the successful evaluation of the project’s EIA Report, I am directed to convey the Ministry’s EIA Approval for the project subject to the following conditions:-

i. The EIA Approval covers the installation of 20MW Photo Voltaic Solar Panels at Kankia, Katsina State.

ii. A robust Environmental Management Plan (EMP) shall put in place and fully implemented for the project.

iii. There shall be continuous consultations with the project’s host communities, relevant authorities and other stakeholders throughout the lifespan of the project.

iv. Corporate Social Responsibility (CSR) plans of the project for primary stakeholders shall be forwarded to the Federal Ministry of Environment.
v. A Memorandum of Understanding (MOU) with relevant stakeholders shall be entered into; copies shall be forwarded to the Federal Ministry of Environment.

vi. A robust Decommissioning and Abandonment Plan for the Project shall be implemented.

vii. There shall be Impact Mitigation Monitoring (IMM) exercise on the project by FMEnv in collaboration with other relevant regulatory authorities. This shall be facilitated by the project proponents and executors.

viii. An Environmental Management System (EMS) shall be implemented throughout the project’s life cycle.

ix. There shall be Environmental Audits, Post Impact Assessments and Compliance Monitoring on the project to be approved by the Federal Ministry of Environment, (FMEnv), which shall be facilitated by the project proponents and executors.

3. The Environmental Impact Statement (EIS) and Certificate shall be issued for the project in due course.

4. Congratulations.

K. B. Odusanya
Ag. Director, Environmental Assessment Dept.
For: Honourable Minister.
FEDERAL MINISTRY OF ENVIRONMENT
ENVIRONMENTAL IMPACT STATEMENT
&
Certificate

1. Project Identity: 200KW SOLAR POWER PLANT PROJECT.
2. Proposed date of project commencement: 16th JUNE, 2014
3. Project Proponent: KATSINA STATE GOVERNMENT.
4. Project Location: KANKA LGA, KATSINA STATE.

COMMENTS:
(i) The approval given covers the installation of 200KW photovoltaic solar panels at Kankia.
(ii) A robust Environmental Management Plan (EMP) shall be put in place and fully implemented for the project.
(iii) There shall be continuous communications with the project host community, relevant authorities and other stakeholders throughout the lifespan of the project.
(iv) Corporate Social Responsibility (CSR) plans of the project for primary stakeholders shall be forwarded to the FMENV. (v) An Environmental Management System shall be implemented throughout the project life cycle. (vi) There shall be an Open Audit, Continuous Monitoring and Impact Mitigation Monitoring on the facility. This shall be published in the media.

5. CERTIFICATION: The Federal Ministry of Environment by the power conferred on it by section 42 of BIA Act No. 86 of 1992 hereby certifies that 200KW SOLAR POWER PLANT PROJECT Project as proposed may proceed subject to above comments.

Date of Issue: 16th JUNE, 2014
Expiry Date: 16th JUNE, 2019

Signed: Ahmed Salihu
Commission Secretary

Date: 01-07-2014

NOTE: Federal Ministry of Environment shall not be liable to any claim(s) under this permit.
July 4, 2014

Marcus Heal
Pan Africa Solar Limited
No. 1 Okoduwa Crescent, off Dillon Road
Along Naval Camp site, Kiri-kiri Industrial layout
Lagos

Dear Sir,

POWER PURCHASE AGREEMENT - LETTER OF INTENT

We understand that you are currently in discussions with the Nigerian Electricity Regulatory Commission (NERC) to secure a generation license for your 54MW plant located in Kankia, Katsina State. Upon your request, we are providing this letter of intent to assist in your efforts to obtain a license.

NBET is responsible for the bulk purchase of electric power from power generating companies, including Independent Power Projects (IPPs), through a Power Purchase Agreement (PPA) and its onward sale to electricity distribution companies through a Vesting Contract (VC). To this end, NBET is willing to enter into a long term PPA with duly licensed IPPs that are able to meet the legal and regulatory, financial, technical and operational requirements of the relevant Nigerian authorities. The PPAs would be based on terms and conditions, including tariffs, approved by the sector regulator, (NERC).

We have received and reviewed the due diligence package provided by Pan Africa Solar (PAS) regarding your proposed 54MW photovoltaic (Solar) power plant to be located in Kankia, Katsina State. We can confirm our commitment to enter into a power purchase agreement (PPA) with your company for this capacity, upon conclusion of negotiations.

We wish you success in all your project development efforts and look forward to a stable long-term relationship with you.

Yours sincerely,

Yesufu “Longe” Alonge
Head, Power Procurement & Power Contracts
REQUEST FOR APPROVAL TO CONNECT 20MW OUTPUT OF PAN AFRICA SOLAR LIMITED PV PLANT TO 132 KV BUS AT KANKIA TRANSMISSION SUB-STATION

We are consultants to PAN AFRICA SOLAR in partnership with Katsina State Government, who are currently working in a public private partnership with the state government to build, construct and operate a 20 MW PV solar plant in Kankia to complement the power supply to nearby locations in Katsina state including the state capital.

This joint effort is to complement the Federal Government drive in achieving an accelerated growth in power generation in the country, especially in areas such as Katsina that are located far away from any generating resources.

In line with existing regulatory requirements, we hereby forward the power evacuation report executed for this project.

We hereby request for your kind approval to connect the output of our 20 MW plant to the 132 KV bus of Kankia transmission station to facilitate the evacuation of power to the grid.

In good anticipation of your kind and urgent response, please accept the assurance of our highest regards.

Yours faithfully,

Engr. Abdulkadir I. Safana
[Partner]
The Honourable Commissioner, 13th May, 2013
Ministry of Resource Development,
Katsina State Government,
No 24 Hassan Usman Katsina Road,
Katsina,
Nigeria.

Sir,

FORWARDING OF FINAL POWER EVACUATION STUDY AND GRID STABILITY REPORT FOR KANKIA 20MW AND 30MW SOLAR FARMS

We are forwarding to you the final power evacuation report and grid stability studies for the 20 MW and 30 MW solar farms located in kankia in katsina state.

The report was thoroughly vetted and one copy each has been forwarded to the Transmission Company of Nigeria (TCN) for the final connection approval at kankia sub-station from the management of TCN.

Please enclosed are one copy each of the report for you to read and if there is any comment we are available to answer any question regarding the report.

In good anticipation of your kind response and cooperation, please accept the assurance of our highest regards.

Yours faithfully,

Engr. Abdulkadir I. Safana
(Partner)
The Honourable Commissioner, Ministry of Resource Development, Katsina State Government, No 24 Hassan Usman Katsina Road, Katsina, Nigeria.

Sir,

FORWARDING OF PROVISIONAL APPROVAL TO CONNECT RECA 30MW AND PAN AFRICA 20MW SOLAR PV IPP TO TCN GRID AT THE 132 KV BUSBAR OF KANKIA SUBSTATION

We are forwarding to you the provisional approval for the 20 MW and 30 MW solar farms located in Kankia in Katsina state.

The approval has been granted by the Transmission Company of Nigeria (TCN) for the connection to the 132 kv busbar at kankia sub-station.

Please enclosed are the original copies each of the approval for your onward delivery to the co-developers of the said projects.

In good anticipation of your kind response and cooperation, please accept the assurance of our highest regards.

Yours faithfully,

Engr. Abdulkadir I. Safana (Partner)
Dear Sir,

PROVISIONAL APPROVAL TO CONNECT PAN AFRICA 20MW PV SOLAR IPP TO TCN GRID AT THE 132kV BUSBAR OF KANKIA SUBSTATION

Reference to your letter dated 7th May 2013 on the above subject and the accompanying Power Evacuation Study report; we are pleased to inform you that a provisional approval is hereby granted to connect PAN AFRICA PV Solar Plant to the National Grid. The approved point of common coupling is the 132kV Bus of Kankia 132/33kV Transmission Substation under Kano Transmission Sub-Region.

By this approval PAN AFRICA Solar is to inject no more than 20MW to the grid and any additional injection is subject to approval by TCN.

This provisional approval is valid for a period of 5 years starting from today. The Power Plant is expected to be in operation and coupled to the national grid at the approved point of common coupling before expiration of this validity period.

Ensure strict compliance with relevant stipulations of the Grid Code, especially parts 3 and 4 on Connection Conditions and Grid Operations respectively, and be mindful of the need to meet with the standard grid protection requirements of TCN.

Please, accept assurance of my highest regard.

Don Priestman,
Chief Executive Officer (TCN)
APPENDIX 3

LIST OF ILO CONVENTIONS RATIFIED AND NOT RATIFIED BY NIGERIA
INTERNATIONAL LABOUR ORGANIZATION (ILO) CONVENTIONS

The International Labour Organization (ILO) is the United Nations (UN) agency that deals with labour issues, particularly international labour standards and decent work for all. The ILO was founded in 1919, to pursue a vision based on the premise that universal, lasting peace can be established only if it is based on social justice. The main aims of the ILO are to promote rights at work, encourage decent employment opportunities, enhance social protection and strengthen dialogue on work-related issues. ILO has 185 member countries.

International labour standards are legal instruments drawn up by the ILO that set out basic principles and rights at work. They include conventions treaties and recommendations. In many cases, a convention lays down the basic principles to be implemented by ratifying countries, while a related recommendation supplements the convention by providing more detailed guidelines on how it could be applied. Recommendations can also be autonomous, i.e. not linked to any convention.

International Labour Organization has created a total of 190 conventions. Out of this number there are eight fundamental Conventions which are binding upon every member country. The other Conventions are binding upon only member countries whose legislatures have chosen to ratify them. The enforcement of conventions is vested on the jurisprudence of domestic courts as ILO does not take up this responsibility.

The lists of ILO Conventions ratified and not ratifies by Nigeria are provided in the tables below.
<table>
<thead>
<tr>
<th>S/N</th>
<th>Convention</th>
<th>Date of Ratification</th>
<th>Status</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C029 - Forced Labour Convention, 1930 (No. 29)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C087 - Freedom of Association and Protection of the Right to Organise Convention, 1948 (No. 87)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C098 - Right to Organise and Collective Bargaining Convention, 1949 (No. 98)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C100 - Equal Remuneration Convention, 1951 (No. 100)</td>
<td>8-May-74</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C105 - Abolition of Forced Labour Convention, 1957 (No. 105)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C111 - Discrimination (Employment and Occupation) Convention, 1958 (No. 111)</td>
<td>2-Oct-02</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C138 - Minimum Age Convention, 1973 (No. 138)Minimum age specified: 15 years</td>
<td>2-Oct-02</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C182 - Worst Forms of Child Labour Convention, 1999 (No. 182)</td>
<td>2-Oct-02</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C081 - Labour Inspection Convention, 1947 (No. 81)Excluding Part II</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C144 - Tripartite Consultation (International Labour Standards) Convention, 1976 (No. 144)</td>
<td>3-May-94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C008 - Unemployment Indemnity (Shipwreck) Convention, 1920 (No. 8)</td>
<td>16-Jun-61</td>
<td>Not in force</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C009 - Placing of Seamen Convention, 1920 (No. 9)</td>
<td>4-Mar-04</td>
<td>Not in force</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C011 - Right of Association (Agriculture) Convention, 1921 (No. 11)</td>
<td>16-Jun-61</td>
<td>In Force</td>
<td>Automatic Denunciation on 18 Jun 2014 by convention MLC, 2006</td>
</tr>
<tr>
<td>14</td>
<td>C015 - Minimum Age (Trimmers and Stokers) Convention, 1921 (No. 15)</td>
<td>17-Oct-60</td>
<td>Not in force</td>
<td>Automatic Denunciation on 18 Jun 2014 by convention C179</td>
</tr>
<tr>
<td>15</td>
<td>C016 - Medical Examination of Young Persons (Sea) Convention, 1921 (No. 16)</td>
<td>17-Oct-60</td>
<td>Not in force</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C019 - Equality of Treatment (Accident Compensation) Convention, 1925 (No. 19)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td>Automatic Denunciation on 02 Oct 2003 by</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
<td>Date of Ratification</td>
<td>Status</td>
<td>Remark</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>----------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>C032 - Protection against Accidents (Dockers) Convention (Revised), 1932 (No. 32)</td>
<td>16-Jun-61</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>C045 - Underground Work (Women) Convention, 1935 (No. 45)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>C050 - Recruiting of Indigenous Workers Convention, 1936 (No. 50)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>C058 - Minimum Age (Sea) Convention (Revised), 1936 (No. 58)</td>
<td>16-Jun-61</td>
<td>Not in force</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>C059 - Minimum Age (Industry) Convention (Revised), 1937 (No. 59)</td>
<td>16-Jun-61</td>
<td>Not in force</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>C064 - Contracts of Employment (Indigenous Workers) Convention, 1939 (No. 64)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td>Automatic Denunciation on 18 Jun 2014 by convention MLC, 2006</td>
</tr>
<tr>
<td>24</td>
<td>C065 - Penal Sanctions (Indigenous Workers) Convention, 1939 (No. 65)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td>Automatic Denunciation on 02 Oct 2003 by convention C138</td>
</tr>
<tr>
<td>25</td>
<td>C088 - Employment Service Convention, 1948 (No. 88)</td>
<td>16-Jun-61</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>C094 - Labour Clauses (Public Contracts) Convention, 1949 (No. 94)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>C095 - Protection of Wages Convention, 1949 (No. 95)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>C097 - Migration for Employment Convention (Revised), 1949 (No. 97)</td>
<td>17-Oct-60</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>C116 - Final Articles Revision Convention, 1961 (No. 116)</td>
<td>27-Jun-62</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>C123 - Minimum Age (Underground Work) Convention, 1965 (No. 123)</td>
<td>14-May-74</td>
<td>In Force</td>
<td>Minimum age specified: 16 years</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
<td>Date of Ratification</td>
<td>Status</td>
<td>Remark</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>C159 - Vocational Rehabilitation and Employment (Disabled Persons) Convention, 1983 (No. 159)</td>
<td>26-Aug-10</td>
<td>In Force</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>C178 - Labour Inspection (Seafarers) Convention, 1996 (No. 178)</td>
<td>19-Aug-04</td>
<td>Not in force</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>C179 - Recruitment and Placement of Seafarers Convention, 1996 (No. 179)</td>
<td>22-Mar-04</td>
<td>Not in force</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>C185 - Seafarers’ Identity Documents Convention (Revised), 2003 (No. 185)</td>
<td>19-Aug-04</td>
<td>In Force</td>
<td>Automatic Denunciation on 18 Jun 2014 by convention MLC, 2006</td>
</tr>
</tbody>
</table>

In accordance with Standard A4.5 (2) and (10), the Government has specified the following branches of social security: medical care; sickness benefit; old-age benefit; employment injury benefit; family benefit; maternity benefit and invalidity benefit.
<table>
<thead>
<tr>
<th>S/N</th>
<th>Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C122 - Employment Policy Convention, 1964 (No. 122)</td>
</tr>
<tr>
<td>2</td>
<td>C129 - Labour Inspection (Agriculture) Convention, 1969 (No. 129)</td>
</tr>
<tr>
<td>3</td>
<td>C001 - Hours of Work (Industry) Convention, 1919 (No. 1)</td>
</tr>
<tr>
<td>4</td>
<td>C002 - Unemployment Convention, 1919 (No. 2)</td>
</tr>
<tr>
<td>5</td>
<td>C003 - Maternity Protection Convention, 1919 (No. 3)</td>
</tr>
<tr>
<td>6</td>
<td>C004 - Night Work (Women) Convention, 1919 (No. 4)</td>
</tr>
<tr>
<td>7</td>
<td>C005 - Minimum Age (Industry) Convention, 1919 (No. 5)</td>
</tr>
<tr>
<td>8</td>
<td>C006 - Night Work of Young Persons (Industry) Convention, 1919 (No. 6)</td>
</tr>
<tr>
<td>9</td>
<td>C007 - Minimum Age (Sea) Convention, 1920 (No. 7)</td>
</tr>
<tr>
<td>10</td>
<td>C010 - Minimum Age (Agriculture) Convention, 1921 (No. 10)</td>
</tr>
<tr>
<td>11</td>
<td>C012 - Workmen's Compensation (Agriculture) Convention, 1921 (No. 12)</td>
</tr>
<tr>
<td>12</td>
<td>C013 - White Lead (Painting) Convention, 1921 (No. 13)</td>
</tr>
<tr>
<td>13</td>
<td>C014 - Weekly Rest (Industry) Convention, 1921 (No. 14)</td>
</tr>
<tr>
<td>14</td>
<td>C016 - Medical Examination of Young Persons (Sea) Convention, 1921 (No. 16)</td>
</tr>
<tr>
<td>15</td>
<td>C017 - Workmen's Compensation (Accidents) Convention, 1925 (No. 17)</td>
</tr>
<tr>
<td>16</td>
<td>C018 - Workmen's Compensation (Occupational Diseases) Convention, 1925 (No. 18)</td>
</tr>
<tr>
<td>17</td>
<td>C020 - Night Work (Bakeries) Convention, 1925 (No. 20)</td>
</tr>
<tr>
<td>18</td>
<td>C021 - Inspection of Emigrants Convention, 1926 (No. 21)</td>
</tr>
<tr>
<td>19</td>
<td>C022 - Seamen's Articles of Agreement Convention, 1926 (No. 22)</td>
</tr>
<tr>
<td>20</td>
<td>C023 - Repatriation of Seamen Convention, 1926 (No. 23)</td>
</tr>
<tr>
<td>21</td>
<td>C024 - Sickness Insurance (Industry) Convention, 1927 (No. 24)</td>
</tr>
<tr>
<td>22</td>
<td>C025 - Sickness Insurance (Agriculture) Convention, 1927 (No. 25)</td>
</tr>
<tr>
<td>23</td>
<td>C027 - Marking of Weight (Packages Transported by Vessels) Convention, 1929 (No. 27)</td>
</tr>
<tr>
<td>24</td>
<td>C028 - Protection against Accidents (Dockers) Convention, 1929 (No. 28)</td>
</tr>
<tr>
<td>25</td>
<td>C030 - Hours of Work (Commerce and Offices) Convention, 1930 (No. 30)</td>
</tr>
<tr>
<td>26</td>
<td>C031 - Hours of Work (Coal Mines) Convention, 1931 (No. 31)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>27</td>
<td>C033 - Minimum Age (Non-Industrial Employment) Convention, 1932 (No. 33)</td>
</tr>
<tr>
<td>28</td>
<td>C034 - Fee-Charging Employment Agencies Convention, 1933 (No. 34)</td>
</tr>
<tr>
<td>29</td>
<td>C035 - Old-Age Insurance (Industry, etc.) Convention, 1933 (No. 35)</td>
</tr>
<tr>
<td>30</td>
<td>C036 - Old-Age Insurance (Agriculture) Convention, 1933 (No. 36)</td>
</tr>
<tr>
<td>31</td>
<td>C037 - Invalidity Insurance (Industry, etc.) Convention, 1933 (No. 37)</td>
</tr>
<tr>
<td>32</td>
<td>C038 - Invalidity Insurance (Agriculture) Convention, 1933 (No. 38)</td>
</tr>
<tr>
<td>33</td>
<td>C039 - Survivors' Insurance (Industry, etc.) Convention, 1933 (No. 39)</td>
</tr>
<tr>
<td>34</td>
<td>C040 - Survivors' Insurance (Agriculture) Convention, 1933 (No. 40)</td>
</tr>
<tr>
<td>35</td>
<td>C041 - Night Work (Women) Convention (Revised), 1934 (No. 41)</td>
</tr>
<tr>
<td>36</td>
<td>C042 - Workmen's Compensation (Occupational Diseases) Convention (Revised), 1934 (No. 42)</td>
</tr>
<tr>
<td>37</td>
<td>C043 - Sheet-Glass Works Convention, 1934 (No. 43)</td>
</tr>
<tr>
<td>38</td>
<td>C044 - Unemployment Provision Convention, 1934 (No. 44)</td>
</tr>
<tr>
<td>39</td>
<td>C046 - Hours of Work (Coal Mines) Convention (Revised), 1935 (No. 46)</td>
</tr>
<tr>
<td>40</td>
<td>C047 - Forty-Hour Week Convention, 1935 (No. 47)</td>
</tr>
<tr>
<td>41</td>
<td>C048 - Maintenance of Migrants' Pension Rights Convention, 1935 (No. 48)</td>
</tr>
<tr>
<td>42</td>
<td>C049 - Reduction of Hours of Work (Glass-Bottle Works) Convention, 1935 (No. 49)</td>
</tr>
<tr>
<td>43</td>
<td>C051 - Reduction of Hours of Work (Public Works) Convention, 1936 (No. 51)</td>
</tr>
<tr>
<td>44</td>
<td>C052 - Holidays with Pay Convention, 1936 (No. 52)</td>
</tr>
<tr>
<td>45</td>
<td>C053 - Officers' Competency Certificates Convention, 1936 (No. 53)</td>
</tr>
<tr>
<td>46</td>
<td>C054 - Holidays with Pay (Sea) Convention, 1936 (No. 54)</td>
</tr>
<tr>
<td>47</td>
<td>C055 - Shipowners' Liability (Sick and Injured Seamen) Convention, 1936 (No. 55)</td>
</tr>
<tr>
<td>48</td>
<td>C056 - Sickness Insurance (Sea) Convention, 1936 (No. 56)</td>
</tr>
<tr>
<td>49</td>
<td>C057 - Hours of Work and Manning (Sea) Convention, 1936 (No. 57)</td>
</tr>
<tr>
<td>50</td>
<td>C060 - Minimum Age (Non-Industrial Employment) Convention (Revised), 1937 (No. 60)</td>
</tr>
<tr>
<td>51</td>
<td>C061 - Reduction of Hours of Work (Textiles) Convention, 1937 (No. 61)</td>
</tr>
<tr>
<td>52</td>
<td>C062 - Safety Provisions (Building) Convention, 1937 (No. 62)</td>
</tr>
<tr>
<td>53</td>
<td>C063 - Convention concerning Statistics of Wages and Hours of Work, 1938 (No. 63)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>54</td>
<td>C066 - Migration for Employment Convention, 1939 (No. 66)</td>
</tr>
<tr>
<td>55</td>
<td>C067 - Hours of Work and Rest Periods (Road Transport) Convention, 1939 (No. 67)</td>
</tr>
<tr>
<td>56</td>
<td>C068 - Food and Catering (Ships' Crews) Convention, 1946 (No. 68)</td>
</tr>
<tr>
<td>57</td>
<td>C069 - Certification of Ships' Cooks Convention, 1946 (No. 69)</td>
</tr>
<tr>
<td>58</td>
<td>C070 - Social Security (Seafarers) Convention, 1946 (No. 70)</td>
</tr>
<tr>
<td>59</td>
<td>C071 - Seafarers' Pensions Convention, 1946 (No. 71)</td>
</tr>
<tr>
<td>60</td>
<td>C072 - Paid Vacations (Seafarers) Convention, 1946 (No. 72)</td>
</tr>
<tr>
<td>61</td>
<td>C073 - Medical Examination (Seafarers) Convention, 1946 (No. 73)</td>
</tr>
<tr>
<td>62</td>
<td>C074 - Certification of Able Seamen Convention, 1946 (No. 74)</td>
</tr>
<tr>
<td>63</td>
<td>C075 - Accommodation of Crews Convention, 1946 (No. 75)</td>
</tr>
<tr>
<td>64</td>
<td>C076 - Wages, Hours of Work and Manning (Sea) Convention, 1946 (No. 76)</td>
</tr>
<tr>
<td>65</td>
<td>C077 - Medical Examination of Young Persons (Industry) Convention, 1946 (No. 77)</td>
</tr>
<tr>
<td>66</td>
<td>C078 - Medical Examination of Young Persons (Non-Industrial Occupations) Convention, 1946 (No. 78)</td>
</tr>
<tr>
<td>67</td>
<td>C079 - Night Work of Young Persons (Non-Industrial Occupations) Convention, 1946 (No. 79)</td>
</tr>
<tr>
<td>68</td>
<td>C080 - Final Articles Revision Convention, 1946 (No. 80)</td>
</tr>
<tr>
<td>69</td>
<td>C082 - Social Policy (Non-Metropolitan Territories) Convention, 1947 (No. 82)</td>
</tr>
<tr>
<td>70</td>
<td>C083 - Labour Standards (Non-Metropolitan Territories) Convention, 1947 (No. 83)</td>
</tr>
<tr>
<td>71</td>
<td>C084 - Right of Association (Non-Metropolitan Territories) Convention, 1947 (No. 84)</td>
</tr>
<tr>
<td>72</td>
<td>C085 - Labour Inspectorates (Non-Metropolitan Territories) Convention, 1947 (No. 85)</td>
</tr>
<tr>
<td>73</td>
<td>C086 - Contracts of Employment (Indigenous Workers) Convention, 1947 (No. 86)</td>
</tr>
<tr>
<td>74</td>
<td>C089 - Night Work (Women) Convention (Revised), 1948 (No. 89)</td>
</tr>
<tr>
<td>75</td>
<td>P089 - Protocol of 1990 to the Night Work (Women) Convention (Revised), 1948</td>
</tr>
<tr>
<td>76</td>
<td>C090 - Night Work of Young Persons (Industry) Convention (Revised), 1948 (No. 90)</td>
</tr>
<tr>
<td>77</td>
<td>C091 - Paid Vacations (Seafarers) Convention (Revised), 1949 (No. 91)</td>
</tr>
<tr>
<td>78</td>
<td>C092 - Accommodation of Crews Convention (Revised), 1949 (No. 92)</td>
</tr>
<tr>
<td>79</td>
<td>C093 - Wages, Hours of Work and Manning (Sea) Convention (Revised), 1949 (No. 93)</td>
</tr>
<tr>
<td>80</td>
<td>C096 - Fee-Charging Employment Agencies Convention (Revised), 1949 (No. 96)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>81</td>
<td>C099 - Minimum Wage Fixing Machinery (Agriculture) Convention, 1951 (No. 99)</td>
</tr>
<tr>
<td>82</td>
<td>C101 - Holidays with Pay (Agriculture) Convention, 1952 (No. 101)</td>
</tr>
<tr>
<td>83</td>
<td>C102 - Social Security (Minimum Standards) Convention, 1952 (No. 102)</td>
</tr>
<tr>
<td>84</td>
<td>C103 - Maternity Protection Convention (Revised), 1952 (No. 103)</td>
</tr>
<tr>
<td>85</td>
<td>C106 - Weekly Rest (Commerce and Offices) Convention, 1957 (No. 106)</td>
</tr>
<tr>
<td>86</td>
<td>C107 - Indigenous and Tribal Populations Convention, 1957 (No. 107)</td>
</tr>
<tr>
<td>87</td>
<td>C108 - Seafarers' Identity Documents Convention, 1958 (No. 108)</td>
</tr>
<tr>
<td>88</td>
<td>C109 - Wages, Hours of Work and Manning (Sea) Convention (Revised), 1958 (No. 109)</td>
</tr>
<tr>
<td>89</td>
<td>C110 - Plantations Convention, 1958 (No. 110)</td>
</tr>
<tr>
<td>90</td>
<td>C112 - Minimum Age (Fishermen) Convention, 1959 (No. 112)</td>
</tr>
<tr>
<td>91</td>
<td>C113 - Medical Examination (Fishermen) Convention, 1959 (No. 113)</td>
</tr>
<tr>
<td>92</td>
<td>C114 - Fishermen's Articles of Agreement Convention, 1959 (No. 114)</td>
</tr>
<tr>
<td>93</td>
<td>C115 - Radiation Protection Convention, 1960 (No. 115)</td>
</tr>
<tr>
<td>94</td>
<td>C117 - Social Policy (Basic Aims and Standards) Convention, 1962 (No. 117)</td>
</tr>
<tr>
<td>95</td>
<td>C118 - Equality of Treatment (Social Security) Convention, 1962 (No. 118)</td>
</tr>
<tr>
<td>96</td>
<td>C119 - Guarding of Machinery Convention, 1963 (No. 119)</td>
</tr>
<tr>
<td>97</td>
<td>C120 - Hygiene (Commerce and Offices) Convention, 1964 (No. 120)</td>
</tr>
<tr>
<td>99</td>
<td>C124 - Medical Examination of Young Persons (Underground Work) Convention, 1965 (No. 124)</td>
</tr>
<tr>
<td>100</td>
<td>C125 - Fishermen's Competency Certificates Convention, 1966 (No. 125)</td>
</tr>
<tr>
<td>101</td>
<td>C126 - Accommodation of Crews (Fishermen) Convention, 1966 (No. 126)</td>
</tr>
<tr>
<td>102</td>
<td>C127 - Maximum Weight Convention, 1967 (No. 127)</td>
</tr>
<tr>
<td>103</td>
<td>C128 - Invalidity, Old-Age and Survivors' Benefits Convention, 1967 (No. 128)</td>
</tr>
<tr>
<td>104</td>
<td>C130 - Medical Care and Sickness Benefits Convention, 1969 (No. 130)</td>
</tr>
<tr>
<td>105</td>
<td>C131 - Minimum Wage Fixing Convention, 1970 (No. 131)</td>
</tr>
<tr>
<td>106</td>
<td>C132 - Holidays with Pay Convention (Revised), 1970 (No. 132)</td>
</tr>
<tr>
<td>107</td>
<td>C135 - Workers' Representatives Convention, 1971 (No. 135)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>108</td>
<td>C136 - Benzene Convention, 1971 (No. 136)</td>
</tr>
<tr>
<td>109</td>
<td>C139 - Occupational Cancer Convention, 1974 (No. 139)</td>
</tr>
<tr>
<td>110</td>
<td>C140 - Paid Educational Leave Convention, 1974 (No. 140)</td>
</tr>
<tr>
<td>111</td>
<td>C141 - Rural Workers' Organisations Convention, 1975 (No. 141)</td>
</tr>
<tr>
<td>112</td>
<td>C142 - Human Resources Development Convention, 1975 (No. 142)</td>
</tr>
<tr>
<td>113</td>
<td>C143 - Migrant Workers (Supplementary Provisions) Convention, 1975 (No. 143)</td>
</tr>
<tr>
<td>114</td>
<td>C145 - Continuity of Employment (Seafarers) Convention, 1976 (No. 145)</td>
</tr>
<tr>
<td>115</td>
<td>C146 - Seafarers' Annual Leave with Pay Convention, 1976 (No. 146)</td>
</tr>
<tr>
<td>116</td>
<td>C147 - Merchant Shipping (Minimum Standards) Convention, 1976 (No. 147)</td>
</tr>
<tr>
<td>118</td>
<td>C149 - Nursing Personnel Convention, 1977 (No. 149)</td>
</tr>
<tr>
<td>119</td>
<td>C150 - Labour Administration Convention, 1978 (No. 150)</td>
</tr>
<tr>
<td>120</td>
<td>C151 - Labour Relations (Public Service) Convention, 1978 (No. 151)</td>
</tr>
<tr>
<td>121</td>
<td>C152 - Occupational Safety and Health (Dock Work) Convention, 1979 (No. 152)</td>
</tr>
<tr>
<td>122</td>
<td>C153 - Hours of Work and Rest Periods (Road Transport) Convention, 1979 (No. 153)</td>
</tr>
<tr>
<td>123</td>
<td>C154 - Collective Bargaining Convention, 1981 (No. 154)</td>
</tr>
<tr>
<td>125</td>
<td>C156 - Workers with Family Responsibilities Convention, 1981 (No. 156)</td>
</tr>
<tr>
<td>126</td>
<td>C157 - Maintenance of Social Security Rights Convention, 1982 (No. 157)</td>
</tr>
<tr>
<td>127</td>
<td>C158 - Termination of Employment Convention, 1982 (No. 158)</td>
</tr>
<tr>
<td>128</td>
<td>C160 - Labour Statistics Convention, 1985 (No. 160)</td>
</tr>
<tr>
<td>129</td>
<td>C161 - Occupational Health Services Convention, 1985 (No. 161)</td>
</tr>
<tr>
<td>130</td>
<td>C162 - Asbestos Convention, 1986 (No. 162)</td>
</tr>
<tr>
<td>131</td>
<td>C163 - Seafarers' Welfare Convention, 1987 (No. 163)</td>
</tr>
<tr>
<td>132</td>
<td>C164 - Health Protection and Medical Care (Seafarers) Convention, 1987 (No. 164)</td>
</tr>
<tr>
<td>133</td>
<td>C165 - Social Security (Seafarers) Convention (Revised), 1987 (No. 165)</td>
</tr>
<tr>
<td>134</td>
<td>C166 - Repatriation of Seafarers Convention (Revised), 1987 (No. 166)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>135</td>
<td>C167 - Safety and Health in Construction Convention, 1988 (No. 167)</td>
</tr>
<tr>
<td>136</td>
<td>C168 - Employment Promotion and Protection against Unemployment Convention, 1988 (No. 168)</td>
</tr>
<tr>
<td>137</td>
<td>C169 - Indigenous and Tribal Peoples Convention, 1989 (No. 169)</td>
</tr>
<tr>
<td>138</td>
<td>C170 - Chemicals Convention, 1990 (No. 170)</td>
</tr>
<tr>
<td>139</td>
<td>C171 - Night Work Convention, 1990 (No. 171)</td>
</tr>
<tr>
<td>140</td>
<td>C172 - Working Conditions (Hotels and Restaurants) Convention, 1991 (No. 172)</td>
</tr>
<tr>
<td>141</td>
<td>C173 - Protection of Workers' Claims (Employer's Insolvency) Convention, 1992 (No. 173)</td>
</tr>
<tr>
<td>142</td>
<td>C174 - Prevention of Major Industrial Accidents Convention, 1993 (No. 174)</td>
</tr>
<tr>
<td>143</td>
<td>C175 - Part-Time Work Convention, 1994 (No. 175)</td>
</tr>
<tr>
<td>144</td>
<td>C176 - Safety and Health in Mines Convention, 1995 (No. 176)</td>
</tr>
<tr>
<td>145</td>
<td>C177 - Home Work Convention, 1996 (No. 177)</td>
</tr>
<tr>
<td>146</td>
<td>C180 - Seafarers' Hours of Work and the Manning of Ships Convention, 1996 (No. 180)</td>
</tr>
<tr>
<td>147</td>
<td>C181 - Private Employment Agencies Convention, 1997 (No. 181)</td>
</tr>
<tr>
<td>148</td>
<td>C183 - Maternity Protection Convention, 2000 (No. 183)</td>
</tr>
<tr>
<td>149</td>
<td>C184 - Safety and Health in Agriculture Convention, 2001 (No. 184)</td>
</tr>
<tr>
<td>151</td>
<td>C188 - Work in Fishing Convention, 2007 (No. 188)</td>
</tr>
<tr>
<td>152</td>
<td>C189 - Domestic Workers Convention, 2011 (No. 189)</td>
</tr>
<tr>
<td>153</td>
<td>P029 - Protocol of 2014 to the Forced Labour Convention, 1930</td>
</tr>
<tr>
<td>154</td>
<td>P081 - Protocol of 1995 to the Labour Inspection Convention, 1947</td>
</tr>
<tr>
<td>155</td>
<td>P089 - Protocol of 1990 to the Night Work (Women) Convention (Revised), 1948</td>
</tr>
<tr>
<td>156</td>
<td>P110 - Protocol of 1982 to the Plantations Convention, 1958</td>
</tr>
<tr>
<td>157</td>
<td>P147 - Protocol of 1996 to the Merchant Shipping (Minimum Standards) Convention, 1976</td>
</tr>
<tr>
<td>159</td>
<td>P110 - Protocol of 1982 to the Plantations Convention, 1958</td>
</tr>
<tr>
<td>160</td>
<td>P147 - Protocol of 1996 to the Merchant Shipping (Minimum Standards) Convention, 1976</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Fundamental conventions</td>
</tr>
<tr>
<td>1</td>
<td>C029 - Forced Labour Convention, 1930 (No. 29)</td>
</tr>
<tr>
<td>2</td>
<td>C087 - Freedom of Association and Protection of the Right to Organise Convention, 1948 (No. 87)</td>
</tr>
<tr>
<td>3</td>
<td>C098 - Right to Organise and Collective Bargaining Convention, 1949 (No. 98)</td>
</tr>
<tr>
<td>4</td>
<td>C100 - Equal Remuneration Convention, 1951 (No. 100)</td>
</tr>
<tr>
<td>5</td>
<td>C105 - Abolition of Forced Labour Convention, 1957 (No. 105)</td>
</tr>
<tr>
<td>6</td>
<td>C111 - Discrimination (Employment and Occupation) Convention, 1958 (No. 111)</td>
</tr>
<tr>
<td>7</td>
<td>C138 - Minimum Age Convention, 1973 (No. 138)</td>
</tr>
<tr>
<td>8</td>
<td>C182 - Worst Forms of Child Labour Convention, 1999 (No. 182)</td>
</tr>
<tr>
<td></td>
<td>Governance conventions</td>
</tr>
<tr>
<td>9</td>
<td>C081 - Labour Inspection Convention, 1947 (No. 81)</td>
</tr>
<tr>
<td>10</td>
<td>C129 - Labour Inspection (Agriculture) Convention, 1969 (No. 129)</td>
</tr>
<tr>
<td>11</td>
<td>C122 - Employment Policy Convention, 1964 (No. 122)</td>
</tr>
<tr>
<td>12</td>
<td>C144 - Tripartite Consultation (International Labour Standards) Convention, 1976 (No. 144)</td>
</tr>
<tr>
<td></td>
<td>Technical conventions</td>
</tr>
<tr>
<td>13</td>
<td>C001 - Hours of Work (Industry) Convention, 1919 (No. 1)</td>
</tr>
<tr>
<td>14</td>
<td>C002 - Unemployment Convention, 1919 (No. 2)</td>
</tr>
<tr>
<td>15</td>
<td>C003 - Maternity Protection Convention, 1919 (No. 3)</td>
</tr>
<tr>
<td>16</td>
<td>C004 - Night Work (Women) Convention, 1919 (No. 4)</td>
</tr>
<tr>
<td>17</td>
<td>C005 - Minimum Age (Industry) Convention, 1919 (No. 5)</td>
</tr>
<tr>
<td>18</td>
<td>C006 - Night Work of Young Persons (Industry) Convention, 1919 (No. 6)</td>
</tr>
<tr>
<td>19</td>
<td>C007 - Minimum Age (Sea) Convention, 1920 (No. 7)</td>
</tr>
<tr>
<td>20</td>
<td>C008 - Unemployment Indemnity (Shipwreck) Convention, 1920 (No. 8)</td>
</tr>
<tr>
<td>21</td>
<td>C009 - Placing of Seamen Convention, 1920 (No. 9)</td>
</tr>
<tr>
<td>22</td>
<td>C010 - Minimum Age (Agriculture) Convention, 1921 (No. 10)</td>
</tr>
<tr>
<td>23</td>
<td>C011 - Right of Association (Agriculture) Convention, 1921 (No. 11)</td>
</tr>
<tr>
<td>24</td>
<td>C012 - Workmen's Compensation (Agriculture) Convention, 1921 (No. 12)</td>
</tr>
<tr>
<td>25</td>
<td>C013 - White Lead (Painting) Convention, 1921 (No. 13)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>C014 - Weekly Rest (Industry) Convention, 1921 (No. 14)</td>
</tr>
<tr>
<td>27</td>
<td>C015 - Minimum Age (Trimmers and Stokers) Convention, 1921 (No. 15)</td>
</tr>
<tr>
<td>28</td>
<td>C016 - Medical Examination of Young Persons (Sea) Convention, 1921 (No. 16)</td>
</tr>
<tr>
<td>29</td>
<td>C017 - Workmen's Compensation (Accidents) Convention, 1925 (No. 17)</td>
</tr>
<tr>
<td>30</td>
<td>C018 - Workmen's Compensation (Occupational Diseases) Convention, 1925 (No. 18)</td>
</tr>
<tr>
<td>31</td>
<td>C019 - Equality of Treatment (Accident Compensation) Convention, 1925 (No. 19)</td>
</tr>
<tr>
<td>32</td>
<td>C020 - Night Work (Bakeries) Convention, 1925 (No. 20)</td>
</tr>
<tr>
<td>33</td>
<td>C021 - Inspection of Emigrants Convention, 1926 (No. 21)</td>
</tr>
<tr>
<td>34</td>
<td>C022 - Seamen's Articles of Agreement Convention, 1926 (No. 22)</td>
</tr>
<tr>
<td>35</td>
<td>C023 - Repatriation of Seamen Convention, 1926 (No. 23)</td>
</tr>
<tr>
<td>36</td>
<td>C024 - Sickness Insurance (Industry) Convention, 1927 (No. 24)</td>
</tr>
<tr>
<td>37</td>
<td>C025 - Sickness Insurance (Agriculture) Convention, 1927 (No. 25)</td>
</tr>
<tr>
<td>38</td>
<td>C026 - Minimum Wage-Fixing Machinery Convention, 1928 (No. 26)</td>
</tr>
<tr>
<td>39</td>
<td>C027 - Marking of Weight (Packages Transported by Vessels) Convention, 1929 (No. 27)</td>
</tr>
<tr>
<td>40</td>
<td>C028 - Protection against Accidents (Dockers) Convention, 1929 (No. 28)</td>
</tr>
<tr>
<td>41</td>
<td>C030 - Hours of Work (Commerce and Offices) Convention, 1930 (No. 30)</td>
</tr>
<tr>
<td>42</td>
<td>C031 - Hours of Work (Coal Mines) Convention, 1931 (No. 31)</td>
</tr>
<tr>
<td>43</td>
<td>C032 - Protection against Accidents (Dockers) Convention (Revised), 1932 (No. 32)</td>
</tr>
<tr>
<td>44</td>
<td>C033 - Minimum Age (Non-Industrial Employment) Convention, 1932 (No. 33)</td>
</tr>
<tr>
<td>45</td>
<td>C034 - Fee-Charging Employment Agencies Convention, 1933 (No. 34)</td>
</tr>
<tr>
<td>46</td>
<td>C035 - Old-Age Insurance (Industry, etc.) Convention, 1933 (No. 35)</td>
</tr>
<tr>
<td>47</td>
<td>C036 - Old-Age Insurance (Agriculture) Convention, 1933 (No. 36)</td>
</tr>
<tr>
<td>48</td>
<td>C037 - Invalidity Insurance (Industry, etc.) Convention, 1933 (No. 37)</td>
</tr>
<tr>
<td>49</td>
<td>C038 - Invalidity Insurance (Agriculture) Convention, 1933 (No. 38)</td>
</tr>
<tr>
<td>50</td>
<td>C039 - Survivors' Insurance (Industry, etc.) Convention, 1933 (No. 39)</td>
</tr>
<tr>
<td>51</td>
<td>C040 - Survivors' Insurance (Agriculture) Convention, 1933 (No. 40)</td>
</tr>
<tr>
<td>52</td>
<td>C041 - Night Work (Women) Convention (Revised), 1934 (No. 41)</td>
</tr>
<tr>
<td>53</td>
<td>C042 - Workmen's Compensation (Occupational Diseases) Convention (Revised), 1934 (No. 42)</td>
</tr>
<tr>
<td>54</td>
<td>C043 - Sheet-Glass Works Convention, 1934 (No. 43)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>55</td>
<td>C044 - Unemployment Provision Convention, 1934 (No. 44)</td>
</tr>
<tr>
<td>56</td>
<td>C045 - Underground Work (Women) Convention, 1935 (No. 45)</td>
</tr>
<tr>
<td>57</td>
<td>C046 - Hours of Work (Coal Mines) Convention (Revised), 1935 (No. 46)</td>
</tr>
<tr>
<td>58</td>
<td>C047 - Forty-Hour Week Convention, 1935 (No. 47)</td>
</tr>
<tr>
<td>59</td>
<td>C048 - Maintenance of Migrants' Pension Rights Convention, 1935 (No. 48)</td>
</tr>
<tr>
<td>60</td>
<td>C049 - Reduction of Hours of Work (Glass-Bottle Works) Convention, 1935 (No. 49)</td>
</tr>
<tr>
<td>61</td>
<td>C050 - Recruiting of Indigenous Workers Convention, 1936 (No. 50)</td>
</tr>
<tr>
<td>62</td>
<td>C051 - Reduction of Hours of Work (Public Works) Convention, 1936 (No. 51)</td>
</tr>
<tr>
<td>63</td>
<td>C052 - Holidays with Pay Convention, 1936 (No. 52)</td>
</tr>
<tr>
<td>64</td>
<td>C053 - Officers' Competency Certificates Convention, 1936 (No. 53)</td>
</tr>
<tr>
<td>65</td>
<td>C054 - Holidays with Pay (Sea) Convention, 1936 (No. 54)</td>
</tr>
<tr>
<td>66</td>
<td>C055 - Shipowners' Liability (Sick and Injured Seamen) Convention, 1936 (No. 55)</td>
</tr>
<tr>
<td>67</td>
<td>C056 - Sickness Insurance (Sea) Convention, 1936 (No. 56)</td>
</tr>
<tr>
<td>68</td>
<td>C057 - Hours of Work and Manning (Sea) Convention, 1936 (No. 57)</td>
</tr>
<tr>
<td>69</td>
<td>C058 - Minimum Age (Sea) Convention (Revised), 1936 (No. 58)</td>
</tr>
<tr>
<td>70</td>
<td>C059 - Minimum Age (Industry) Convention (Revised), 1937 (No. 59)</td>
</tr>
<tr>
<td>71</td>
<td>C060 - Minimum Age (Non-Industrial Employment) Convention (Revised), 1937 (No. 60)</td>
</tr>
<tr>
<td>72</td>
<td>C061 - Reduction of Hours of Work (Textiles) Convention, 1937 (No. 61)</td>
</tr>
<tr>
<td>73</td>
<td>C062 - Safety Provisions (Building) Convention, 1937 (No. 62)</td>
</tr>
<tr>
<td>74</td>
<td>C063 - Convention concerning Statistics of Wages and Hours of Work, 1938 (No. 63)</td>
</tr>
<tr>
<td>75</td>
<td>C064 - Contracts of Employment (Indigenous Workers) Convention, 1939 (No. 64)</td>
</tr>
<tr>
<td>76</td>
<td>C065 - Penal Sanctions (Indigenous Workers) Convention, 1939 (No. 65)</td>
</tr>
<tr>
<td>77</td>
<td>C066 - Migration for Employment Convention, 1939 (No. 66)</td>
</tr>
<tr>
<td>78</td>
<td>C067 - Hours of Work and Rest Periods (Road Transport) Convention, 1939 (No. 67)</td>
</tr>
<tr>
<td>79</td>
<td>C068 - Food and Catering (Ships' Crews) Convention, 1946 (No. 68)</td>
</tr>
<tr>
<td>80</td>
<td>C069 - Certification of Ships' Cooks Convention, 1946 (No. 69)</td>
</tr>
<tr>
<td>81</td>
<td>C070 - Social Security (Seafarers) Convention, 1946 (No. 70)</td>
</tr>
<tr>
<td>82</td>
<td>C071 - Seafarers' Pensions Convention, 1946 (No. 71)</td>
</tr>
<tr>
<td>83</td>
<td>C072 - Paid Vacations (Seafarers) Convention, 1946 (No. 72)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>84</td>
<td>C073 - Medical Examination (Seafarers) Convention, 1946 (No. 73)</td>
</tr>
<tr>
<td>85</td>
<td>C074 - Certification of Able Seamen Convention, 1946 (No. 74)</td>
</tr>
<tr>
<td>86</td>
<td>C075 - Accommodation of Crews Convention, 1946 (No. 75)</td>
</tr>
<tr>
<td>87</td>
<td>C076 - Wages, Hours of Work and Manning (Sea) Convention, 1946 (No. 76)</td>
</tr>
<tr>
<td>88</td>
<td>C077 - Medical Examination of Young Persons (Industry) Convention, 1946 (No. 77)</td>
</tr>
<tr>
<td>89</td>
<td>C078 - Medical Examination of Young Persons (Non-Industrial Occupations) Convention, 1946 (No. 78)</td>
</tr>
<tr>
<td>90</td>
<td>C079 - Night Work of Young Persons (Non-Industrial Occupations) Convention, 1946 (No. 79)</td>
</tr>
<tr>
<td>91</td>
<td>C080 - Final Articles Revision Convention, 1946 (No. 80)</td>
</tr>
<tr>
<td>92</td>
<td>C082 - Social Policy (Non-Metropolitan Territories) Convention, 1947 (No. 82)</td>
</tr>
<tr>
<td>93</td>
<td>C083 - Labour Standards (Non-Metropolitan Territories) Convention, 1947 (No. 83)</td>
</tr>
<tr>
<td>94</td>
<td>C084 - Right of Association (Non-Metropolitan Territories) Convention, 1947 (No. 84)</td>
</tr>
<tr>
<td>95</td>
<td>C085 - Labour Inspectorates (Non-Metropolitan Territories) Convention, 1947 (No. 85)</td>
</tr>
<tr>
<td>96</td>
<td>C086 - Contracts of Employment (Indigenous Workers) Convention, 1947 (No. 86)</td>
</tr>
<tr>
<td>97</td>
<td>C088 - Employment Service Convention, 1948 (No. 88)</td>
</tr>
<tr>
<td>98</td>
<td>C089 - Night Work (Women) Convention (Revised), 1948 (No. 89)</td>
</tr>
<tr>
<td>99</td>
<td>C090 - Night Work of Young Persons (Industry) Convention (Revised), 1948 (No. 90)</td>
</tr>
<tr>
<td>100</td>
<td>C091 - Paid Vacations (Seafarers) Convention (Revised), 1949 (No. 91)</td>
</tr>
<tr>
<td>101</td>
<td>C092 - Accommodation of Crews Convention (Revised), 1949 (No. 92)</td>
</tr>
<tr>
<td>102</td>
<td>C093 - Wages, Hours of Work and Manning (Sea) Convention (Revised), 1949 (No. 93)</td>
</tr>
<tr>
<td>103</td>
<td>C094 - Labour Clauses (Public Contracts) Convention, 1949 (No. 94)</td>
</tr>
<tr>
<td>104</td>
<td>C095 - Protection of Wages Convention, 1949 (No. 95)</td>
</tr>
<tr>
<td>105</td>
<td>C096 - Fee-Charging Employment Agencies Convention (Revised), 1949 (No. 96)</td>
</tr>
<tr>
<td>106</td>
<td>C097 - Migration for Employment Convention (Revised), 1949 (No. 97)</td>
</tr>
<tr>
<td>107</td>
<td>C099 - Minimum Wage Fixing Machinery (Agriculture) Convention, 1951 (No. 99)</td>
</tr>
<tr>
<td>108</td>
<td>C101 - Holidays with Pay (Agriculture) Convention, 1952 (No. 101)</td>
</tr>
<tr>
<td>109</td>
<td>C102 - Social Security (Minimum Standards) Convention, 1952 (No. 102)</td>
</tr>
<tr>
<td>110</td>
<td>C103 - Maternity Protection Convention (Revised), 1952 (No. 103)</td>
</tr>
<tr>
<td>111</td>
<td>C104 - Abolition of Penal Sanctions (Indigenous Workers) Convention, 1955 (No. 104)</td>
</tr>
<tr>
<td>112</td>
<td>C106 - Weekly Rest (Commerce and Offices) Convention, 1957 (No. 106)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>113</td>
<td>C107 - Indigenous and Tribal Populations Convention, 1957 (No. 107)</td>
</tr>
<tr>
<td>114</td>
<td>C108 - Seafarers’ Identity Documents Convention, 1958 (No. 108)</td>
</tr>
<tr>
<td>115</td>
<td>C109 - Wages, Hours of Work and Manning (Sea) Convention (Revised), 1958 (No. 109)</td>
</tr>
<tr>
<td>116</td>
<td>C110 - Plantations Convention, 1958 (No. 110)</td>
</tr>
<tr>
<td>117</td>
<td>P110 - Protocol of 1982 to the Plantations Convention, 1958</td>
</tr>
<tr>
<td>118</td>
<td>C112 - Minimum Age (Fishermen) Convention, 1959 (No. 112)</td>
</tr>
<tr>
<td>119</td>
<td>C113 - Medical Examination (Fishermen) Convention, 1959 (No. 113)</td>
</tr>
<tr>
<td>120</td>
<td>C114 - Fishermen’s Articles of Agreement Convention, 1959 (No. 114)</td>
</tr>
<tr>
<td>121</td>
<td>C115 - Radiation Protection Convention, 1960 (No. 115)</td>
</tr>
<tr>
<td>122</td>
<td>C116 - Final Articles Revision Convention, 1961 (No. 116)</td>
</tr>
<tr>
<td>123</td>
<td>C117 - Social Policy (Basic Aims and Standards) Convention, 1962 (No. 117)</td>
</tr>
<tr>
<td>124</td>
<td>C118 - Equality of Treatment (Social Security) Convention, 1962 (No. 118)</td>
</tr>
<tr>
<td>125</td>
<td>C119 - Guarding of Machinery Convention, 1963 (No. 119)</td>
</tr>
<tr>
<td>126</td>
<td>C120 - Hygiene (Commerce and Offices) Convention, 1964 (No. 120)</td>
</tr>
<tr>
<td>128</td>
<td>C123 - Minimum Age (Underground Work) Convention, 1965 (No. 123)</td>
</tr>
<tr>
<td>129</td>
<td>C124 - Medical Examination of Young Persons (Underground Work) Convention, 1965 (No. 124)</td>
</tr>
<tr>
<td>130</td>
<td>C125 - Fishermen’s Competency Certificates Convention, 1966 (No. 125)</td>
</tr>
<tr>
<td>131</td>
<td>C126 - Accommodation of Crews (Fishermen) Convention, 1966 (No. 126)</td>
</tr>
<tr>
<td>132</td>
<td>C127 - Maximum Weight Convention, 1967 (No. 127)</td>
</tr>
<tr>
<td>133</td>
<td>C128 - Invalidity, Old-Age and Survivors' Benefits Convention, 1967 (No. 128)</td>
</tr>
<tr>
<td>134</td>
<td>C130 - Medical Care and Sickness Benefits Convention, 1969 (No. 130)</td>
</tr>
<tr>
<td>135</td>
<td>C131 - Minimum Wage Fixing Convention, 1970 (No. 131)</td>
</tr>
<tr>
<td>136</td>
<td>C132 - Holidays with Pay Convention (Revised), 1970 (No. 132)</td>
</tr>
<tr>
<td>137</td>
<td>C133 - Accommodation of Crews (Supplementary Provisions) Convention, 1970 (No. 133)</td>
</tr>
<tr>
<td>138</td>
<td>C134 - Prevention of Accidents (Seafarers) Convention, 1970 (No. 134)</td>
</tr>
<tr>
<td>139</td>
<td>C135 - Workers’ Representatives Convention, 1971 (No. 135)</td>
</tr>
<tr>
<td>140</td>
<td>C136 - Benzene Convention, 1971 (No. 136)</td>
</tr>
<tr>
<td>141</td>
<td>C137 - Dock Work Convention, 1973 (No. 137)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>142</td>
<td>C139 - Occupational Cancer Convention, 1974 (No. 139)</td>
</tr>
<tr>
<td>143</td>
<td>C140 - Paid Educational Leave Convention, 1974 (No. 140)</td>
</tr>
<tr>
<td>144</td>
<td>C141 - Rural Workers’ Organisations Convention, 1975 (No. 141)</td>
</tr>
<tr>
<td>145</td>
<td>C142 - Human Resources Development Convention, 1975 (No. 142)</td>
</tr>
<tr>
<td>146</td>
<td>C143 - Migrant Workers (Supplementary Provisions) Convention, 1975 (No. 143)</td>
</tr>
<tr>
<td>147</td>
<td>C145 - Continuity of Employment (Seafarers) Convention, 1976 (No. 145)</td>
</tr>
<tr>
<td>148</td>
<td>C146 - Seafarers’ Annual Leave with Pay Convention, 1976 (No. 146)</td>
</tr>
<tr>
<td>149</td>
<td>C147 - Merchant Shipping (Minimum Standards) Convention, 1976 (No. 147)</td>
</tr>
<tr>
<td>150</td>
<td>P147 - Protocol of 1996 to the Merchant Shipping (Minimum Standards) Convention, 1976</td>
</tr>
<tr>
<td>152</td>
<td>C149 - Nursing Personnel Convention, 1977 (No. 149)</td>
</tr>
<tr>
<td>153</td>
<td>C150 - Labour Administration Convention, 1978 (No. 150)</td>
</tr>
<tr>
<td>154</td>
<td>C151 - Labour Relations (Public Service) Convention, 1978 (No. 151)</td>
</tr>
<tr>
<td>155</td>
<td>C152 - Occupational Safety and Health (Dock Work) Convention, 1979 (No. 152)</td>
</tr>
<tr>
<td>156</td>
<td>C153 - Hours of Work and Rest Periods (Road Transport) Convention, 1979 (No. 153)</td>
</tr>
<tr>
<td>157</td>
<td>C154 - Collective Bargaining Convention, 1981 (No. 154)</td>
</tr>
<tr>
<td>158</td>
<td>C155 - Occupational Safety and Health Convention, 1981 (No. 155)</td>
</tr>
<tr>
<td>159</td>
<td>P155 - Protocol of 2002 to the Occupational Safety and Health Convention, 1981</td>
</tr>
<tr>
<td>160</td>
<td>C156 - Workers with Family Responsibilities Convention, 1981 (No. 156)</td>
</tr>
<tr>
<td>161</td>
<td>C157 - Maintenance of Social Security Rights Convention, 1982 (No. 157)</td>
</tr>
<tr>
<td>162</td>
<td>C158 - Termination of Employment Convention, 1982 (No. 158)</td>
</tr>
<tr>
<td>163</td>
<td>C159 - Vocational Rehabilitation and Employment (Disabled Persons) Convention, 1983 (No. 159)</td>
</tr>
<tr>
<td>164</td>
<td>C160 - Labour Statistics Convention, 1985 (No. 160)</td>
</tr>
<tr>
<td>165</td>
<td>C161 - Occupational Health Services Convention, 1985 (No. 161)</td>
</tr>
<tr>
<td>166</td>
<td>C162 - Asbestos Convention, 1986 (No. 162)</td>
</tr>
<tr>
<td>167</td>
<td>C163 - Seafarers’ Welfare Convention, 1987 (No. 163)</td>
</tr>
<tr>
<td>168</td>
<td>C164 - Health Protection and Medical Care (Seafarers) Convention, 1987 (No. 164)</td>
</tr>
<tr>
<td>169</td>
<td>C165 - Social Security (Seafarers) Convention (Revised), 1987 (No. 165)</td>
</tr>
<tr>
<td>170</td>
<td>C166 - Repatriation of Seafarers Convention (Revised), 1987 (No. 166)</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>171</td>
<td>C167 - Safety and Health in Construction Convention, 1988 (No. 167)</td>
</tr>
<tr>
<td>172</td>
<td>C168 - Employment Promotion and Protection against Unemployment Convention, 1988 (No. 168)</td>
</tr>
<tr>
<td>173</td>
<td>C169 - Indigenous and Tribal Peoples Convention, 1989 (No. 169)</td>
</tr>
<tr>
<td>174</td>
<td>C170 - Chemicals Convention, 1990 (No. 170)</td>
</tr>
<tr>
<td>175</td>
<td>C171 - Night Work Convention, 1990 (No. 171)</td>
</tr>
<tr>
<td>176</td>
<td>C172 - Working Conditions (Hotels and Restaurants) Convention, 1991 (No. 172)</td>
</tr>
<tr>
<td>177</td>
<td>C173 - Protection of Workers' Claims (Employer's Insolvency) Convention, 1992 (No. 173)</td>
</tr>
<tr>
<td>178</td>
<td>C174 - Prevention of Major Industrial Accidents Convention, 1993 (No. 174)</td>
</tr>
<tr>
<td>179</td>
<td>C175 - Part-Time Work Convention, 1994 (No. 175)</td>
</tr>
<tr>
<td>180</td>
<td>C176 - Safety and Health in Mines Convention, 1995 (No. 176)</td>
</tr>
<tr>
<td>181</td>
<td>C177 - Home Work Convention, 1996 (No. 177)</td>
</tr>
<tr>
<td>182</td>
<td>C178 - Labour Inspection (Seafarers) Convention, 1996 (No. 178)</td>
</tr>
<tr>
<td>183</td>
<td>C179 - Recruitment and Placement of Seafarers Convention, 1996 (No. 179)</td>
</tr>
<tr>
<td>184</td>
<td>C180 - Seafarers’ Hours of Work and the Manning of Ships Convention, 1996 (No. 180)</td>
</tr>
<tr>
<td>185</td>
<td>C181 - Private Employment Agencies Convention, 1997 (No. 181)</td>
</tr>
<tr>
<td>186</td>
<td>C183 - Maternity Protection Convention, 2000 (No. 183)</td>
</tr>
<tr>
<td>187</td>
<td>C184 - Safety and Health in Agriculture Convention, 2001 (No. 184)</td>
</tr>
<tr>
<td>188</td>
<td>C185 - Seafarers’ Identity Documents Convention (Revised), 2003 (No. 185)</td>
</tr>
<tr>
<td>190</td>
<td>C187 - Promotional Framework for Occupational Safety and Health Convention, 2006 (No. 187)</td>
</tr>
<tr>
<td>191</td>
<td>C188 - Work in Fishing Convention, 2007 (No. 188)</td>
</tr>
<tr>
<td>192</td>
<td>C189 - Domestic Workers Convention, 2011 (No. 189)</td>
</tr>
<tr>
<td>193</td>
<td>P029 - Protocol of 2014 to the Forced Labour Convention, 1930</td>
</tr>
<tr>
<td>194</td>
<td>P081 - Protocol of 1995 to the Labour Inspection Convention, 1947</td>
</tr>
<tr>
<td>195</td>
<td>P089 - Protocol of 1990 to the Night Work (Women) Convention (Revised), 1948</td>
</tr>
<tr>
<td>196</td>
<td>P110 - Protocol of 1982 to the Plantations Convention, 1958</td>
</tr>
<tr>
<td>197</td>
<td>P147 - Protocol of 1996 to the Merchant Shipping (Minimum Standards) Convention, 1976</td>
</tr>
<tr>
<td>199</td>
<td>P029 - Protocol of 2014 to the Forced Labour Convention, 1930</td>
</tr>
<tr>
<td>S/N</td>
<td>Convention</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>200</td>
<td>P081 - Protocol of 1995 to the Labour Inspection Convention, 1947</td>
</tr>
<tr>
<td>201</td>
<td>P089 - Protocol of 1990 to the Night Work (Women) Convention (Revised), 1948</td>
</tr>
</tbody>
</table>
APPENDIX 4

LAND VALUATION REPORT
The Honourable Commissioner,

Ministry of Resource Development,

Katsina state,

RE: REQUEST FOR VALUATION OF THE LAND ALLOCATED TO KANKIA SOLAR POWER PROJECT

I am directed to refer to your letter Ref. No. KTS/MRD/ADM/33/VOL. 11/278

Dated 19th March, 2014. In respect of the above subject matter, and forward herewith the original copy of the valuation report for Kankia solar power project as requested please.

PS

[Signature]

ABDULKADIR HALILU
For Honourable Commissioner.
VALUATION REPORT IN RESPECT OF KANKIA SOLAR POWER PROJECT

PREPARED BY:

MINISTRY OF LANDS AND SURVEY KATSINA STATE, KATSINA

APRIL, 2014
CAPITAL VALUATION REPORT IN RESPECT OF KANKIA SOLAR POWER PROJECT

PREAMBLE;

By a letter reference No.KT/MRD/ADM/33/VOL.11/278 Dated 19th March, 2014. We have been instructed by the Honourable Commissioner Ministry of Resource Development to inspect and provide a capital valuation report in respect of the above subject property.

In compliance with the request, we have carried out market survey, research and other factors necessary to produce the value were also examined.

Consequently, we submit herewith a valuation report which contains the details of our inspection. Findings, observation, remarks and opinion of value thereof.

DATE OF INSPECTION:

The subject property was inspected on 7th April, 2014.

LOCATION OF THE PROPERTY;

The site is located along Katsina to Kano road just about 1.5 km to kankia town while driving from Katsina. It was situated on the eastern side and western side of the main road and is therefore very accessible.

SITE CONDITION;

There are two sites acquired for the purpose of this project one is located at the eastern side with a high tension line cut across the land with a total area of 72.28ha and the latter is at the
western side with a total land area of 50.00ha. The two sites are plain and free from any unlikely future floods. The soil condition appears solid and well compacted. It is also well levelled and self draining.

INTEREST IN THE PROPERTY;

The ownership is vested with the Katsina state government for this reason, no further titles search is deemed necessary.

TOWN PLANNING CONSIDERATION;

Considering the placement of the subject property, there is no indication of any adverse town planning that affects now or in the foreseeable future. The use is therefore considered secure.

SERVICES:

There are necessary provision in place to receive essential services i.e. water and electricity. However, due to non start of the project, all these are not provided from their mains or other sources.

VALUATION ASSUMPTIONS;

The following assumptions were made during the conduct of the valuation:

1. The area and dimensions of the properties are correct.
2. Good titles are assumed.
3. The properties are free from onerous charges and restriction.
4. Information gathered from all those contacted is assumed to be reliable and correct.
5. The effect of tax on the property is ignored.
(6) Any sketch or identification survey of the properties included in this report is only meant to assist the reader to visualize the properties.

BASIS OF VALUATION;

The comparison method and analysis taken used to arrive at the Capital Value

DEFINITION OF VALUE;

Open market is intended to mean the best price at which an interest may be reasonably sold at the date of valuation stated

(a) Willing buyer and a willing seller.
(b) A reasonable period within which to negotiate the sale taking into consideration the nature of the property and the state of the market.
(c) That value will remain static throughout the period.
(d) No account is taken of an additional bid by a special purchaser.

VALUATION OPINION;

Having considered the nature of this property it location accessibility we are of the opinion that the open market capital value is in the region of # 127,848,000.00 (ONE HUNDRED AND Twenty Seven Million Eight Hundred And Forty Eight Thousand Naira Only.

DETAILED VALUATION

1. Land area for Nigerian German energy partnership solar farm

Pan Africa solar ltd

Gachi Kankia KTSG 1129
Land area = 50.00ha = 500,000m²
Rate/m² X #100 = #50,000,000.00

ECONOMIC TREE

#2,180,000.00
#52,180,000.00

2. Land area for Nigerian German energy partnership solar farm

Helios energy ltd

Gachi Kankia KISG 1128

Land area = 72.28ha

= 722,800.00M²

RATE/M² = #100.00

#72,280,000.00

ECONOMIC TREES

#3,388,000.00 #75,668,000.00

NET CAPITAL VALUE

#127,848,000.00

LAWAL IBRAHIM YAR'ADUA

PTO (Valuation)
APPENDIX 5

KANKIA EVALUATION ROUTE COMPENSATION
SCHEDULE FOR PAYMENT OF COMPENSATION FOR ECONOMICS TREE, CASH CROPS AND STRUCTURES

FOR THE EXTENSION OF 132 KVA TRANSMISSION AT KANKIA SOLAR PV POWER PROJECT

PREPARED BY
MINISTRY OF LANDS AND SURVEYS KATSINA, KATSINA STATE

JUNE, 2015
<table>
<thead>
<tr>
<th>S/NO</th>
<th>NAME</th>
<th>NO</th>
<th>RATE</th>
<th>AMOUNT</th>
<th>TOTAL</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GACHI COMMUNITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEMM(m)</td>
<td>6</td>
<td>2000</td>
<td>N</td>
<td>12,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADUWA(m)</td>
<td>1</td>
<td>3500</td>
<td>N</td>
<td>3,500.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,500.00</td>
<td>15,500.00</td>
</tr>
<tr>
<td>2</td>
<td>MOHAMMED NUHU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td>N</td>
<td>1.00</td>
<td>HA</td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td></td>
<td></td>
<td>N</td>
<td>26,000.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEMM(m)</td>
<td>5</td>
<td>2000</td>
<td>N</td>
<td>10,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KUKA (M)</td>
<td>2</td>
<td>5000</td>
<td>N</td>
<td>10,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADUWA(m)</td>
<td>1</td>
<td>3500</td>
<td>N</td>
<td>3,500.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23,500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49,500.00</td>
<td>49,500.00</td>
</tr>
<tr>
<td>3</td>
<td>ALIYU MAINASARA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td>N</td>
<td>1.00</td>
<td>HA</td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td></td>
<td></td>
<td>N</td>
<td>26,000.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KUKA(m)</td>
<td>1</td>
<td>5000</td>
<td>N</td>
<td>5,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KUKA (M)</td>
<td>1</td>
<td>5000</td>
<td>N</td>
<td>5,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADUWA(m)</td>
<td>1</td>
<td>3500</td>
<td>N</td>
<td>3,500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,500.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Land Area</td>
<td>Crops</td>
<td>Economic Trees</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>4</td>
<td>Lawal Zubairu</td>
<td>1.00</td>
<td></td>
<td></td>
<td>26,000.00</td>
<td>26,000.00</td>
</tr>
<tr>
<td></td>
<td>Guine Corn</td>
<td>N</td>
<td></td>
<td></td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economic Trees</td>
<td></td>
<td></td>
<td></td>
<td>1,900.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magarya (S)</td>
<td>38</td>
<td>50</td>
<td></td>
<td>200.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neem (S)</td>
<td>1</td>
<td>200</td>
<td></td>
<td>5,000.00</td>
<td>7,100.00</td>
</tr>
<tr>
<td></td>
<td>Cindazugu (m)</td>
<td>10</td>
<td>500</td>
<td></td>
<td>33,100.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ibrahim Magini</td>
<td>1.00</td>
<td></td>
<td></td>
<td>30,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Millet</td>
<td>N</td>
<td></td>
<td></td>
<td>30,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economic Trees</td>
<td></td>
<td></td>
<td></td>
<td>5,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gajowa (M)</td>
<td>1</td>
<td>5000</td>
<td></td>
<td>40,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cindazugu (m)</td>
<td>70</td>
<td>500</td>
<td></td>
<td>70,000.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rabiu Tukur Gaiwa</td>
<td>1.00</td>
<td></td>
<td></td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guine Corn</td>
<td>N</td>
<td></td>
<td></td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economic Trees</td>
<td></td>
<td></td>
<td></td>
<td>150.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zogala (S)</td>
<td>1</td>
<td>150</td>
<td></td>
<td>21,650.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cindazugu (m)</td>
<td>43</td>
<td>500</td>
<td></td>
<td>47,650.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Cash Crop</td>
<td>Units</td>
<td>Value</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAI UNGUWA LAWAL</td>
<td>MILLET</td>
<td>N</td>
<td>30,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>MILLET</td>
<td>N</td>
<td>30,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KUKA(M)</td>
<td>1</td>
<td>5000</td>
<td>5,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CINDAZUGU(M)</td>
<td>110</td>
<td>500</td>
<td>55,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120,000.00</td>
<td>120,000.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HAJIYA IZZATU MUSA</td>
<td>MILLET</td>
<td>N</td>
<td>1.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARKE</td>
<td>1</td>
<td>5,000.00</td>
<td>5,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM</td>
<td>2</td>
<td>2,000.00</td>
<td>4,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,950.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>235,950.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HAJIYA KILISHI</td>
<td>MILLET</td>
<td>N</td>
<td>30,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLOT</td>
<td></td>
<td>200,000.00</td>
<td>200,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAGARYA(S)</td>
<td>25</td>
<td>50</td>
<td>1,250.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAWO(S)</td>
<td>1</td>
<td>500</td>
<td>500.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91,750.00</td>
<td>231,850.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALH. TANIMU SHEHU</td>
<td></td>
<td>1.50</td>
<td>HACTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>MILLET</td>
<td>N</td>
<td>30,000.00</td>
<td>N</td>
<td>45,000.00</td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAGARYA(S)</td>
<td>50</td>
<td>50</td>
<td>2,500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAWO (S)</td>
<td>1</td>
<td>200</td>
<td>200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CINDAZUGU(m)</td>
<td>50</td>
<td>500</td>
<td>25,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GORUBA(S)</td>
<td>1</td>
<td>600</td>
<td>600.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DANYA(S)</td>
<td>1</td>
<td>350</td>
<td>350.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOGALA(S)</td>
<td>4</td>
<td>150</td>
<td>600.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MUHAMMADU TANIMU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td>2.00</td>
<td>HACTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/NUT</td>
<td>N</td>
<td>45,000.00</td>
<td>N</td>
<td>90,000.00</td>
</tr>
<tr>
<td></td>
<td>PLOT</td>
<td></td>
<td></td>
<td>200,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YAR MALAM MANSIR</td>
<td></td>
<td>2.00</td>
<td>HACTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/NUT</td>
<td>N</td>
<td>45,000.00</td>
<td>N</td>
<td>90,000.00</td>
</tr>
<tr>
<td></td>
<td>OPEN PLOT</td>
<td></td>
<td></td>
<td>200,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADUWA(M)</td>
<td>3</td>
<td>3500</td>
<td>10,500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOGALA(M)</td>
<td>10</td>
<td>1500</td>
<td>15,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALH. MUHAMMADU TELA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N 75,850.00 75,850.00
N 90,000.00 290,000.00
N 325,000.00 325,000.00
<table>
<thead>
<tr>
<th>LAND AREA</th>
<th>CASH CROP</th>
<th>PLOT</th>
<th>BASIRU MUSA</th>
<th>CASH CROP</th>
<th>PLOT</th>
<th>NURA BALA</th>
<th>CASH CROP</th>
<th>ECONOMIC TREES</th>
<th>MAGARYA(S)</th>
<th>NEEM (M)</th>
<th>MAGARYA(S)</th>
<th>LALLE(M)</th>
<th>KUKA(M)</th>
<th>ZOGALA(S)</th>
<th>GAWO(M)</th>
<th>AMADU UBA BALA</th>
<th>CASH CROP</th>
<th>ECONOMIC TREES</th>
<th>KANYA(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G/NUT</td>
<td>N</td>
<td>0.50 HACTER</td>
<td>G/NUT</td>
<td>N</td>
<td>MILLET</td>
<td>N</td>
<td></td>
<td>50</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>0.50 HACTER</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>N 45,000.00</td>
<td>N</td>
<td>HACTER</td>
<td>N 45,000.00</td>
<td>N</td>
<td>1.00</td>
<td>N 30,000.00</td>
<td></td>
<td>50</td>
<td>2000</td>
<td>50</td>
<td>1500</td>
<td>5000</td>
<td>150</td>
<td>6000</td>
<td></td>
<td>43,550.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200,000.00</td>
<td>N</td>
<td></td>
<td>22,500.00</td>
<td>N</td>
<td>30,000.00</td>
<td>30,000.00</td>
<td></td>
<td>2,500.00</td>
<td>12,000.00</td>
<td>250.00</td>
<td>1,500.00</td>
<td>5,000.00</td>
<td>300.00</td>
<td></td>
<td></td>
<td>73,550.00</td>
<td></td>
<td>4,000.00</td>
</tr>
<tr>
<td></td>
<td>N 90,000.00</td>
<td>N</td>
<td>90,000.00</td>
<td>290,000.00</td>
<td></td>
<td>225,500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90,000.00</td>
<td></td>
<td></td>
<td>200,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200,000.00</td>
<td></td>
<td></td>
<td>225,500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73,550.00</td>
<td></td>
<td></td>
<td>73,550.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30,000.00</td>
<td></td>
<td></td>
<td>30,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,000.00</td>
<td></td>
<td></td>
<td>4,000.00</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Quantity</td>
<td>Unit</td>
<td>Price</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Neem (m)</td>
<td>5</td>
<td></td>
<td>N 10,000.00</td>
<td></td>
</tr>
<tr>
<td>Kuka (m)</td>
<td>1</td>
<td></td>
<td>N 5,000.00</td>
<td></td>
</tr>
<tr>
<td>Cindazugu (m)</td>
<td>30</td>
<td>500</td>
<td>N 15,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 34,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49,000.00</td>
<td></td>
</tr>
<tr>
<td>Alh. Muntari Maude</td>
<td></td>
</tr>
<tr>
<td>Economic Trees</td>
<td></td>
<td></td>
<td>24,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24,000.00</td>
<td></td>
</tr>
<tr>
<td>Alh. Yakubu Bello</td>
<td></td>
</tr>
<tr>
<td>Mango (m)</td>
<td>2</td>
<td>6000</td>
<td>N 12,000.00</td>
<td></td>
</tr>
<tr>
<td>Neem (m)</td>
<td>9</td>
<td>2000</td>
<td>N 18,000.00</td>
<td></td>
</tr>
<tr>
<td>Geya (m)</td>
<td>40</td>
<td>500</td>
<td>N 20,000.00</td>
<td></td>
</tr>
<tr>
<td>Cindazugu (m)</td>
<td>40</td>
<td>500</td>
<td>N 20,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bello Amadu Mutum</td>
<td></td>
</tr>
<tr>
<td>Structure Mud Build</td>
<td></td>
<td></td>
<td>N 4,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 451,200.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>451,200.00</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>Saifullahi Muntari</td>
<td></td>
</tr>
<tr>
<td>Land Area</td>
<td>0.70</td>
<td></td>
<td>Hecter</td>
<td></td>
</tr>
<tr>
<td>Cash Crop</td>
<td>G/NUT</td>
<td>45,000</td>
<td>N 31,500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>231,500.00</td>
<td></td>
</tr>
<tr>
<td>Plot</td>
<td>N</td>
<td></td>
<td>200,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Name</td>
<td>Land Area</td>
<td>Cash Crop</td>
<td>Earnings</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>ABU KASIMU AMAUDU</td>
<td>0.70</td>
<td>G/NUT</td>
<td>N 31,500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>5 2000</td>
<td>N 10,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CINDAZUGU (M)</td>
<td>50 500</td>
<td>N 25,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KUKA (M)</td>
<td>1 5000</td>
<td>N 5,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLOT</td>
<td>N 200,000.00</td>
<td>N 271,500.00</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ZAKARI YA’U RABIU</td>
<td>0.30</td>
<td>MILLET</td>
<td>N 9,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>3 2000</td>
<td>N 6,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CINDAZUGU (M)</td>
<td>70 500</td>
<td>N 35,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLOT</td>
<td>N 200,000.00</td>
<td>N 50,000.00</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>SAIDU ALBASU MUSA</td>
<td>1.00</td>
<td>G/NUT</td>
<td>N 45,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLOT</td>
<td>N 200,000.00</td>
<td>N 245,000.00</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>MUSA MUHAMMAD</td>
<td>1.00</td>
<td>G/NUT</td>
<td>N 45,000.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plot</th>
<th>Plot Area</th>
<th>Cash Crop</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>N 200,000</td>
<td>G/NUT 45,000</td>
<td>245,000</td>
</tr>
<tr>
<td>26</td>
<td>N 200,000</td>
<td>MILLET 30,000</td>
<td>236,000</td>
</tr>
<tr>
<td>27</td>
<td>N 1,000</td>
<td>MAIZE 56,000</td>
<td>56,000</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>NEEM (M)</td>
<td>2</td>
<td>2000</td>
<td>N</td>
</tr>
<tr>
<td>KUKA(M)</td>
<td>1</td>
<td>5000</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>29 BABBANGIDA MAI LEMU</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 HACTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N</td>
<td>26,000.00</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

LAND AREA						
1.00 HACTER						
CASH CROP	MILLET	N	30,000.00		N	

ECONOMIC TREES						
CINDAZUGU(M)	60	500	N	30,000.00		
NEEM (M)	10	2000	N	20,000.00		
KUKA(M)	2	5000	N	10,000.00		
MARKE(M)	1	5000	N	5,000.00		65,000.00

MARKE(M)							
1.00 HACTER							
CASH CROP	MILLET	N	30,000.00		N	121,000.00	121,000.00

30 ADAMU SAI'DU							
LAND AREA							
0.50 HACTER							
CASH CROP	G/CORN	N	26,000.00		N	13,000.00	13,000.00

| ECONOMIC TREES | | | | | |
| NIL | | | | | |

<p>| 31 ZAKARIYA U RABI'IU | | | | | |
| ECONOMIC TREES | | | | | | |
| NEEM (M) | 8 | 2,000.00| N | 16,000.00 | | |
| KANYA(M) | 1 | 4,000.00| N | 4,000.00 | | |
| CINDAZUGU(M) | 20 | 500 | N | 10,000.00 | | 30,000.00 | 30,000.00 |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Land Area</th>
<th>Cash Crop</th>
<th>ECONOMIC TREES</th>
<th>NEEM (M)</th>
<th>Gummo (M)</th>
<th>CINDAZUGU (M)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Sani Salisu</td>
<td>0.20</td>
<td>Millet</td>
<td>6</td>
<td>2000.00</td>
<td>5000.00</td>
<td>47</td>
<td>23,500.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2000.00</td>
<td>5000.00</td>
<td>40,500.00</td>
<td>40,500.00</td>
</tr>
<tr>
<td>33</td>
<td>Ibrahim Usman Dan Baffa</td>
<td>1.00</td>
<td>Millet</td>
<td>2</td>
<td>2000.00</td>
<td></td>
<td></td>
<td>10,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Ladidi Mustafa Ladan</td>
<td>1.00</td>
<td>Millet</td>
<td>2</td>
<td>2000.00</td>
<td></td>
<td></td>
<td>24,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Turai Salisu</td>
<td>1.00</td>
<td>Millet</td>
<td>2</td>
<td>2000.00</td>
<td></td>
<td></td>
<td>9,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>ALH. SANI SALISU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td>5,200.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N</td>
<td>26,000.00</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>4</td>
<td>2000</td>
<td>N</td>
<td>8,000.00</td>
<td></td>
<td>13,200.00</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SABI’U SALISU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>3</td>
<td>2000</td>
<td>N</td>
<td>6,000.00</td>
<td></td>
<td>21,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GORUBA(M)</td>
<td>2</td>
<td>6000</td>
<td>N</td>
<td>12,000.00</td>
<td></td>
<td>21,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FARU(M)</td>
<td>1</td>
<td>3000</td>
<td>N</td>
<td>3,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>USMAN SALISU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>5</td>
<td>2000</td>
<td>N</td>
<td>10,000.00</td>
<td></td>
<td>47,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KUKA(M)</td>
<td>5</td>
<td>5000</td>
<td>N</td>
<td>25,000.00</td>
<td></td>
<td>47,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KANYA(M)</td>
<td>2</td>
<td>4000</td>
<td>N</td>
<td>8,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEZA(M)</td>
<td>2</td>
<td>500</td>
<td>N</td>
<td>1,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KALGO(M)</td>
<td>1</td>
<td>3000</td>
<td>N</td>
<td>3,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>SANI SALISU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td>52,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N</td>
<td>26,000.00</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADUA(M)</td>
<td>3</td>
<td>3500</td>
<td>N</td>
<td>10,500.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARKE (M)</td>
<td>2</td>
<td>5000</td>
<td>N</td>
<td>10,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KANYA(M)</td>
<td>2</td>
<td>4000</td>
<td>N</td>
<td>8,000.00</td>
<td></td>
<td>28,500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80,500.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NAME</th>
<th>LAND AREA</th>
<th>CASH CROP</th>
<th>ECONOMIC TREES</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>SANUSI SANI SALISU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00</td>
<td>HACTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N 26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>3</td>
<td>2,000.00</td>
<td>6,000.00</td>
</tr>
<tr>
<td></td>
<td>NEEM (IM)</td>
<td>2</td>
<td>1,000.00</td>
<td>2,000.00</td>
</tr>
<tr>
<td></td>
<td>MARKE(M)</td>
<td>2</td>
<td>5,000.00</td>
<td>10,000.00</td>
</tr>
<tr>
<td></td>
<td>KUKA(M)</td>
<td>2</td>
<td>5,000.00</td>
<td>10,000.00</td>
</tr>
<tr>
<td></td>
<td>KANYA(M)</td>
<td>1</td>
<td>4,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KANYA(S)</td>
<td>3</td>
<td>400.00</td>
<td>N 1,200.00</td>
</tr>
<tr>
<td>41</td>
<td>USMAN SALISU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>HACTER</td>
<td>52,000.00</td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N 26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>4</td>
<td>2,000.00</td>
<td>8,000.00</td>
</tr>
<tr>
<td></td>
<td>MARKE(M)</td>
<td>3</td>
<td>5,000.00</td>
<td>15,000.00</td>
</tr>
<tr>
<td></td>
<td>ZOGALA(M)</td>
<td>5</td>
<td>750.00</td>
<td>N 3,750.00</td>
</tr>
<tr>
<td></td>
<td>KUKA(M)</td>
<td>13</td>
<td>2,500.00</td>
<td>N 32,500.00</td>
</tr>
<tr>
<td></td>
<td>KANYA(M)</td>
<td>1</td>
<td>4,000.00</td>
<td>N 4,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 115,250.00</td>
</tr>
<tr>
<td>42</td>
<td>ALI BOYI</td>
<td></td>
<td></td>
<td>2,600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N 26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (IM)</td>
<td>2</td>
<td>1,000.00</td>
<td>2,000.00</td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>2</td>
<td>2,000.00</td>
<td>N 4,000.00</td>
</tr>
<tr>
<td>Name</td>
<td>Land Area</td>
<td>CASH CROP</td>
<td>ECONOMIC TREES</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>ZOGLA(S)</td>
<td>2</td>
<td>150.00</td>
<td>N</td>
<td>300.00</td>
</tr>
<tr>
<td>CINDAZUGU(M)</td>
<td>82</td>
<td>500.00</td>
<td>N</td>
<td>41,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47,300.00</td>
</tr>
<tr>
<td>ALH. JAMILU DAN LULA</td>
<td>0.10</td>
<td>MILLET</td>
<td>N</td>
<td>3,000.00</td>
</tr>
<tr>
<td>NEEM (M)</td>
<td>2</td>
<td>1,000.00</td>
<td>N</td>
<td>2,000.00</td>
</tr>
<tr>
<td>ADUA (M)</td>
<td>3</td>
<td>3,500.00</td>
<td>N</td>
<td>10,500.00</td>
</tr>
<tr>
<td>GAWO(M)</td>
<td>1</td>
<td>5,000.00</td>
<td>N</td>
<td>5,000.00</td>
</tr>
<tr>
<td>FARU(M)</td>
<td>1</td>
<td>3,000.00</td>
<td>N</td>
<td>3,000.00</td>
</tr>
<tr>
<td>LAWAL MATI</td>
<td></td>
<td></td>
<td></td>
<td>23,500.00</td>
</tr>
<tr>
<td>ALH. SANI DOGON MARKE</td>
<td>0.10</td>
<td>G/CORN</td>
<td>N</td>
<td>26,000.00</td>
</tr>
<tr>
<td>LAWAL ZUBAIRU</td>
<td></td>
<td></td>
<td></td>
<td>26,000.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5,000.00</td>
<td>N</td>
<td>5,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,200.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.00</td>
<td>N</td>
<td>26,000.00</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Land Area</td>
<td>Cash Crop</td>
<td>Economic Trees</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>47</td>
<td>ALH. YUSUF DAURAWA</td>
<td>1.50</td>
<td>26,000.00</td>
<td>61,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>HALLIRU DAURAWA</td>
<td>0.10</td>
<td>26,000.00</td>
<td>10,600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>ISIYAKU ABUBAKAR</td>
<td>1.00</td>
<td>26,000.00</td>
<td>52,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>ALI HALLRU</td>
<td>0.10</td>
<td></td>
<td>3,000.00</td>
</tr>
<tr>
<td>Name</td>
<td>Crop</td>
<td>Area</td>
<td>Value</td>
<td>Total</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Iliya Abdu</td>
<td>G/Corn</td>
<td>10,250</td>
<td>30,000.00</td>
<td></td>
</tr>
<tr>
<td>Neem (M)</td>
<td>1</td>
<td>3,500</td>
<td>3,500.00</td>
<td></td>
</tr>
<tr>
<td>Adua (M)</td>
<td>1</td>
<td>1,750</td>
<td>1,750.00</td>
<td></td>
</tr>
<tr>
<td>Adua (IM)</td>
<td>1</td>
<td>2,000</td>
<td>2,000.00</td>
<td>7,250.00</td>
</tr>
<tr>
<td>Neem (M)</td>
<td>1</td>
<td>4,000</td>
<td>4,000.00</td>
<td>45,500.00</td>
</tr>
<tr>
<td>Kuka (M)</td>
<td>3</td>
<td>3,500</td>
<td>10,500.00</td>
<td>53,300.00</td>
</tr>
<tr>
<td>Canadzugu (M)</td>
<td>40</td>
<td>500</td>
<td>20,000.00</td>
<td></td>
</tr>
<tr>
<td>Attiku Sani</td>
<td>G/Corn</td>
<td>0.30</td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td>Kuka (M)</td>
<td>2</td>
<td>5,000</td>
<td>10,000.00</td>
<td></td>
</tr>
<tr>
<td>Dany (M)</td>
<td>1</td>
<td>3,500</td>
<td>3,500.00</td>
<td>16,500.00</td>
</tr>
<tr>
<td>Chediya (M)</td>
<td>1</td>
<td>3,000</td>
<td>3,000.00</td>
<td></td>
</tr>
<tr>
<td>Sani Adu</td>
<td>G/Corn</td>
<td>1</td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td>Kuka (M)</td>
<td>1</td>
<td>5,000</td>
<td>5,000.00</td>
<td></td>
</tr>
<tr>
<td>Zogala (IM)</td>
<td>3</td>
<td>750</td>
<td>2,250.00</td>
<td></td>
</tr>
<tr>
<td>Bagaruwa (M)</td>
<td>1</td>
<td>2,000</td>
<td>2,000.00</td>
<td>35,250.00</td>
</tr>
<tr>
<td>G/Corn (M)</td>
<td>1</td>
<td>HA</td>
<td>26,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>54</td>
<td>MURUJALI MUNTARI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N</td>
<td>26,000.00</td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>5</td>
<td>2,000.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>ISMAIL USMAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N</td>
<td>26,000.00</td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEEM (M)</td>
<td>4</td>
<td>2,000.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>TUKUR USMAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASH CROP</td>
<td>G/CORN</td>
<td>N</td>
<td>26,000.00</td>
</tr>
<tr>
<td></td>
<td>ECONOMIC TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KANYA (S)</td>
<td>10</td>
<td>400.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>NEEMGEZA (M)</td>
<td>12</td>
<td>500.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>KANYA(M)</td>
<td>4</td>
<td>4,000.00</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>ILIYA ABDU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>154.00</td>
<td>M2</td>
<td>64,000.00</td>
<td>64,000.00</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1 NO MUD BUILDING</td>
<td>N</td>
<td>5,000.00</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NO PLASTER AND PAINT WITH CIS ROOFING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 NO MOSQAE MUD BUILDING NO PLASTER AND PAINT WITH CIS ROOFING</td>
<td>N</td>
<td>12.80</td>
<td>M2</td>
<td>834,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANI ABDU</td>
<td>211.50</td>
<td>M2</td>
<td>1,057,500.00</td>
<td>10800</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 NO MUD BUILDING</td>
<td>N</td>
<td>5,000.00</td>
<td>N</td>
<td>67,500.00</td>
</tr>
<tr>
<td>NO PLASTER AND PAINT WITH CIS ROOFING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 NO RUMBUS MUD BUILDING WITH CIYAWA ROOFING</td>
<td>N</td>
<td>22.50</td>
<td>M2</td>
<td>1,135,800.00</td>
</tr>
<tr>
<td>ZINC VERENDER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANI ABDU</td>
<td>350.00</td>
<td>M2</td>
<td>1,750,000.00</td>
<td>1,750,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9,031,800.00</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD LOGISTICS</td>
<td>300,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GRAND TOTAL</td>
<td>9,331,800.00</td>
<td></td>
</tr>
</tbody>
</table>

Nine million three hundred and thirty one thousand eight hundred naira only
ASSESSMENT TEAM

1. Lawal Ibrahim Yar’adua M.L.S
2. Nura Tukur M.L.S
3. Aminu Abubakar M.L.S
4. Saifullahi Umar Masanawa Office of the survey general
5. Shamsu Bala Saulawa M.L.S
6. Olumide Sanya
7. M.M Garba

In attendance of

1. Magaji Kafin Dangi
2. Mai Unguwa Kafin Dangi
APPENDIX 6

LONG TERM SOLAR RESOURCE ASSESSMENT
LONG TERM SOLAR RESOURCE ASSESSMENT

KATSINA, NIGERIA

<table>
<thead>
<tr>
<th>Reference</th>
<th>PR107251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Mauricio Richter</td>
</tr>
<tr>
<td>Date</td>
<td>24/03/2014</td>
</tr>
<tr>
<td>Version</td>
<td>Final version</td>
</tr>
<tr>
<td>Distribution scope</td>
<td>External</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Introduction

3E performs independent long term solar resource assessment as a technical advisor to support the investment decision for a photovoltaic installation located in Nigeria.

Objectives

The objective of this report is to estimate the mean Global Horizontal Irradiation (GHI) to support the Client’s investment decision. An on-site irradiation measurement campaign of at least 10 months has been done by the Client.

The on-site measured irradiation and the different meteorological data sources (satellites and ground measurements) are combined to estimate the most realistic resource through a Measure Correlate Predict (MCP) methodology.

Remarks

It’s recommended to use at least a secondary standard pyranometer as reference dataset for the MCP methodology. Thus, the results shown in this study are subject to a higher uncertainty since the measurement device used for this project, a Kipp & Zonen CMP 3 - hereafter referred as "The Pyranometer", is only a second class pyranometer according to ISO9060.
2 SITE OVERVIEW

The Client has requested 3E to carry out a long term solar resource assessment for the project “Katsina” located at (12°34′11.5″N 7°49′16.7″E) in Nigeria.

Figure 1: Site location – Katsina, Nigeria
3 LONG-TERM SOLAR RESOURCE ASSESSMENT

3.1 DESCRIPTION OF METEOROLOGICAL DATA SOURCES

Table 1 provides a list of the meteorological data sources that were analysed in order to take them into account for the resource assessment.

Table 1: Meteorological data sources

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Period of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site Measurements</td>
<td>Pyranometer</td>
<td>06/04/2013 – 24/02/2014</td>
</tr>
<tr>
<td>MSGCPP</td>
<td>Converted satellite data</td>
<td>06/04/2013 – 24/02/2014</td>
</tr>
<tr>
<td>Meteonorm</td>
<td>Geographically interpolated satellite and ground data</td>
<td>1986 - 2005</td>
</tr>
<tr>
<td>SoDa (HC-3)</td>
<td>Converted satellite data</td>
<td>02/2004 - 02/2014</td>
</tr>
</tbody>
</table>

3.1.1 On-site measurements

Ground-based measurements from a pyranometer located at the potential project site are used. The available Global horizontal Irradiation (GHI) measurements cover the period starting from April 6th 2013 until February 24th 2014.

3.1.2 MSGCPP

The cloud, radiation and precipitation properties are retrieved from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board of Meteosat Second Generation (MSG) with the Cloud Physical Properties (CPP) algorithm of KNMI (Roebeling et al., 2006). The MSG-CPP algorithm consists of three steps. The first step is to separate cloud free from cloud contaminated and cloud filled pixels, which is done with a modified version of the cloud detection algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) (J. Riedi, University of Lille). In the second step the primary cloud properties (Cloud Top Temperature, Cloud Phase, Cloud Optical Thickness and Cloud Particle size) are retrieved in an iterative manner by simultaneously comparing satellite observed reflectances at visible (0.6 um) and near-infrared (1.6 um) wavelengths to Look Up Tables (LUTs) of simulated reflectances of water and ice clouds for given optical thicknesses, particle sizes and surface albedos. These LUTs have been generated with the Doubling Adding KNMI (DAK) radiative transfer model (Stammes, 2001). The third step is to calculate the secondary cloud properties (Cloud Water Path, Cloud Droplet Number Concentration, Cloud Geometrical Thickness, Surface Solar Irradiance, Precipitation occurrence and intensity) for which the retrieval largely relies on the primary cloud properties. The retrievals are limited to satellite and solar viewing zenith angles smaller than 78°.
This database is only used for comparison purposes for the period with available on-site measurements (i.e. not used for the MCP methodology), since 3E has only data from this database for the past 2 years for the analysed site.

3.1.3 Meteonorm 7

METEONORM is a comprehensive meteorological reference [MET 12], incorporating a catalogue of meteorological data and calculation procedures for solar applications and system design at any desired location in the world. It is based on over 25 years of experience in the development of meteorological databases for energy applications.

METEONORM is primarily a method for the calculation of solar radiation on arbitrarily orientated surfaces at any desired location. The method is based on databases and algorithms coupled together according to a predetermined scheme. It commences with the user specifying a particular location for which meteorological data are required, and terminates with the delivery of data in the desired structure and in the required format.

The new METEONORM 7 radiation database (released in May 2012) is based on the period 1986 - 2005 (for a total of 1942 stations. For the constructions of the database, the most important source of radiation data is the Global Energy Balance Archive (GEBA), used also to extract the uncertainty information from 770 stations. For the remaining sites, if the nearest site is more than 30 km (Europe: 10 km) away, the interpolation of global radiation data is based on a mixture of ground measurements and satellite data [REM 11]. In the case of remote areas where no radiation measurement is available nearer than 300 km from the selected location, only satellite information is used. The new version includes a new high resolution satellite map for Europe (produced by MeteoSwiss) and due to the new enhanced interpolation models, the uncertainty, variability and trend information of yearly values are given for any desired site in the world [MET 12].

For the analysed site, an uncertainty for the yearly irradiation values of 8% is given by the database.

3.1.4 SoDa (HC-3)

The SoDa service is based on irradiation data derived from satellite observations ([LEF 01], [WAL 02]). For irradiation values, HelioClim-3 is based on Meteosat Second Generation satellites (MSG).

The monthly data allow estimating the yearly variation of the solar irradiation. This database is used for the MCP methodology in combination with the on-site measurements.

3.2 MEASURE CORRELATE PREDICT (MCP)

The common practice for Long-Term Yield Estimations (LTYE) is to combine different databases in order to reduce the uncertainty in the solar resource estimation. If ground measurements are available for a short period (e.g. one year), this data can be combined with e.g. long-term satellite estimations by use of the Measure-Correlate-Predict (MCP) methodology, as described in [THU 12], [GUE 09]. The purpose of this methodology is to combine data having a short period of record but site-specific
seasonal and diurnal characteristics with a data set having a long period of record but not necessarily site-specific characteristics. Upon completion of a year of ground measurements, a linear regression or other relationship is established between measured data at the target site, spanning a relatively short period, and the satellite data, spanning a much longer period. The complete record of the satellite data is then used in this relationship to predict the long-term historical climate at the target site. Assuming a strong correlation, the strengths of both data sets are captured and the uncertainty in the long-term estimate can be reduced. MCP is a widely established and recognized methodology for wind resource assessments and its application is gaining ground for solar resource assessment as well.

For this particular project, ground-based measured data from a pyranometer are used as described in section 3.1.1. Since less than 12 months of measured data are available, the common MCP methodology cannot be applied straightforward given that e.g. seasonal effects can exist and influence the results. Nevertheless, if a bias between the long-term dataset and the local short-term measured data is consistent over time, this short-term high quality data can be used to identify such a bias, which in turn can be used to adjust the long-term dataset reducing this way the overall uncertainty.

As shown in Figure 2, the inter-annual variability of the GHI for the analysed site is small and a clear pattern can be observed. The common period with ground measured data and satellite estimations was analysed more in detail looking at higher resolution data. The results of the analysis show that the satellite (SoDa) is consistently underestimating the irradiation.

![Figure 2: Inter-annual variability of the monthly Global Horizontal Irradiation (GHI) for the analysed site](image)

As mentioned before, the ideal case would be to have one complete year of measured data in order to include more accurately any seasonal effects and to have a high quality measurement device to be used as reference for the MCP methodology. Since this is not the case for this particular project (only 10 months of data and not the highest quality measurement device is used), the best available results are presented in Figure 3 where the correlated long-term monthly GHI values are the result of applying
the MCP methodology with the available data assuming that the satellite model bias is stable over the year. In order to validate this assumption, long-term data from Meteonorm was used only for comparison purposes (red dashed line in Figure 3). As stated by Meteonorm, for the selected site only pre-calculated radiation maps based on satellite and ground information are used due to the low density of the network. In any case, this data is only shown for comparison purposes.

Figure 3: Overview of the Long-term monthly GHI from the available databases and the results of the MCP methodology application

3.3 GLOBAL IRRADIATION ON THE HORIZONTAL PLANE

The comparison of the irradiation data on the horizontal plane for the different sources is given in Table 2.

Table 2: Global irradiation on the horizontal plane for the analysed site [kWh/m²]

<table>
<thead>
<tr>
<th></th>
<th>Number of years</th>
<th>Average irradiation</th>
<th>Climate variability</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoDa (HC-3)</td>
<td>9</td>
<td>2141</td>
<td></td>
<td>2.5 %</td>
</tr>
<tr>
<td>Meteonorm</td>
<td>20</td>
<td>2202</td>
<td>5.1 %</td>
<td>8 %</td>
</tr>
<tr>
<td>Long-term correlated</td>
<td>9</td>
<td>2366</td>
<td></td>
<td>5 %</td>
</tr>
</tbody>
</table>
The climate variability represents the yearly standard deviation of 20 years of global horizontal irradiation data from Meteonorm 7.

The resulting Long-term correlated yearly Global Horizontal Irradiation (GHI) as shown in Table 2 is $2366 \text{ [kWh/m}^2\text{]}$. This value is subject to a high uncertainty in the order of 5% (class of the pyranometer) i.e. in order to take this value into a business model, one should calculate e.g. the P90 associated to it, being in this case $2214 \text{ [kWh/m}^2\text{]}$.
4 REFERENCES

APPENDIX 7

SINGLE LINE DIAGRAM
APPENDIX 8

PROJECT SCHEDULE
<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Week 1</td>
<td>Week 2</td>
<td>Week 3</td>
<td>Week 4</td>
<td>Week 5</td>
<td>Week 6</td>
<td>Week 7</td>
<td>Week 8</td>
<td>Week 9</td>
<td>Week 10</td>
<td>Week 11</td>
<td>Week 12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2016</td>
<td>Week 13</td>
<td>Week 14</td>
<td>Week 15</td>
<td>Week 16</td>
<td>Week 17</td>
<td>Week 18</td>
<td>Week 19</td>
<td>Week 20</td>
<td>Week 21</td>
<td>Week 22</td>
<td>Week 23</td>
<td>Week 24</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

Civil works & Logistics
- Building site equipment
- Site preparation
- Construction works
- Site preparation

Mechanical construction works
- Calibration of weighing points
- Mounding of steel points

Electrical installation work
- Installation DC-mains
- Potential equalisation lighting protections
- Installation DC-converters
- Connection inverters
- Cable trenching all cables
- Installation transformers at transmission stations

Commissioning
- Testing measuring
- Provision commissioning
- Preparation as built files
- Commissioning

Transmission
- Design & Survey Works
- Measurement & Logistics
- Preparation
- Coupling flange fines
- Installation transmission Poles
- Connection to Sub Station
- Connection to PAS Transformer

PHASE 1 - 24MWp

PHASE 2 - 30MWp
APPENDIX 9

BASELINE RESULTS
Table 4.1: Air Quality and Noise Results for Sample Locations within the Project Site

<table>
<thead>
<tr>
<th>Sampling Code</th>
<th>TSP (mg/m³)</th>
<th>O₃ (ppm)</th>
<th>CO (ppm)</th>
<th>SO₂ (ppm)</th>
<th>NO₂ (ppm)</th>
<th>CO₂ (ppm)</th>
<th>H₂S (ppm)</th>
<th>CH₄ (ppm)</th>
<th>NH₃ (ppm)</th>
<th>Noise Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>0.085</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.066</td>
<td>675.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.25</td>
<td>60.2</td>
</tr>
<tr>
<td>AQ2</td>
<td>0.081</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.241</td>
<td>707.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>62.1</td>
</tr>
<tr>
<td>AQ3</td>
<td>0.096</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.201</td>
<td>702.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>54.3</td>
</tr>
<tr>
<td>AQ4</td>
<td>0.071</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.172</td>
<td>670.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>56.4</td>
</tr>
<tr>
<td>AQ6</td>
<td>0.037</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.078</td>
<td>693.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.20</td>
<td>51.5</td>
</tr>
<tr>
<td>AQ7</td>
<td>0.037</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.046</td>
<td>482.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.23</td>
<td>60.4</td>
</tr>
<tr>
<td>AQ8</td>
<td>0.040</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.075</td>
<td>707.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>53.3</td>
</tr>
<tr>
<td>AQ9</td>
<td>0.145</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.056</td>
<td>666.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.18</td>
<td>59.2</td>
</tr>
<tr>
<td>Min.</td>
<td>0.037</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>482.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>51.50</td>
</tr>
<tr>
<td>Max.</td>
<td>0.145</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.24</td>
<td>707.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.25</td>
<td>62.10</td>
</tr>
<tr>
<td>Mean</td>
<td>0.077</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>649.10</td>
<td>0.03</td>
<td>0.00</td>
<td>0.21</td>
<td>57.10</td>
</tr>
</tbody>
</table>

Source: EnvAccord Wet Season Field Survey, October 2014
Table 4.2: Air Quality and Noise Results for Sample Locations outside the Project Site

<table>
<thead>
<tr>
<th>Sampling Code</th>
<th>TSP (mg/m³)</th>
<th>O₃ (ppm)</th>
<th>CO (ppm)</th>
<th>SO₂ (ppm)</th>
<th>NO₂ (ppm)</th>
<th>CO₂ (ppm)</th>
<th>H₂S (ppm)</th>
<th>CH₄ (ppm)</th>
<th>NH₃ (ppm)</th>
<th>Noise Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ5</td>
<td>0.124</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.191</td>
<td>432.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>59.2</td>
</tr>
<tr>
<td>AQ10</td>
<td>0.060</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.187</td>
<td>332.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>60.2</td>
</tr>
<tr>
<td>AQ11</td>
<td>0.041</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.085</td>
<td>314.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>59.1</td>
</tr>
<tr>
<td>AQ12</td>
<td>0.102</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.101</td>
<td>312.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>54.8</td>
</tr>
<tr>
<td>AQ13</td>
<td>0.140</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.203</td>
<td>341.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>62.9</td>
</tr>
<tr>
<td>AQ14</td>
<td>0.168</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.103</td>
<td>401.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>63.0</td>
</tr>
<tr>
<td>AQ15</td>
<td>0.158</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.113</td>
<td>436.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>54.5</td>
</tr>
<tr>
<td>AQ16</td>
<td>0.078</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td>0.114</td>
<td>336.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>55.8</td>
</tr>
<tr>
<td>AQ17</td>
<td>0.174</td>
<td>0.00</td>
<td>1.01</td>
<td>1.13</td>
<td>0.126</td>
<td>852.00</td>
<td>0.11</td>
<td>0.14</td>
<td>0.19</td>
<td>70.9</td>
</tr>
<tr>
<td>AQ18</td>
<td>0.061</td>
<td>0.00</td>
<td>0.10</td>
<td>0.01</td>
<td>0.122</td>
<td>675.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>57.4</td>
</tr>
<tr>
<td>AQ19</td>
<td>0.220</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.214</td>
<td>440.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>52.1</td>
</tr>
<tr>
<td>AQ20</td>
<td>0.191</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.007</td>
<td>634.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>54.6</td>
</tr>
<tr>
<td>Min.</td>
<td>0.041</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.007</td>
<td>312.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>52.1</td>
</tr>
<tr>
<td>Max.</td>
<td>0.220</td>
<td>0.00</td>
<td>1.01</td>
<td>1.13</td>
<td>0.214</td>
<td>852.00</td>
<td>0.11</td>
<td>0.14</td>
<td>0.23</td>
<td>70.9</td>
</tr>
<tr>
<td>Mean</td>
<td>0.127</td>
<td>0.00</td>
<td>0.17</td>
<td>0.179</td>
<td>0.128</td>
<td>476.357</td>
<td>0.016</td>
<td>0.020</td>
<td>0.064</td>
<td>59.12</td>
</tr>
</tbody>
</table>

Source: EnvAccord: Wet Season Field Survey 2014
<table>
<thead>
<tr>
<th>Sampling Code</th>
<th>TSP (mg/m³)</th>
<th>O₃ (ppm)</th>
<th>CO (ppm)</th>
<th>SO₂ (ppm)</th>
<th>NO₂ (ppm)</th>
<th>CO₂ (ppm)</th>
<th>H₂S (ppm)</th>
<th>CH₄ (ppm)</th>
<th>NH₃ (ppm)</th>
<th>Noise Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>0.085</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.066</td>
<td>675.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.25</td>
<td>60.2</td>
</tr>
<tr>
<td>AQ2</td>
<td>0.081</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.241</td>
<td>707.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>62.1</td>
</tr>
<tr>
<td>AQ3</td>
<td>0.096</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.201</td>
<td>702.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>54.3</td>
</tr>
<tr>
<td>AQ4</td>
<td>0.071</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.172</td>
<td>670.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>56.4</td>
</tr>
<tr>
<td>AQ5</td>
<td>0.124</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.191</td>
<td>432.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>59.2</td>
</tr>
<tr>
<td>AQ6</td>
<td>0.037</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.078</td>
<td>693.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.20</td>
<td>51.5</td>
</tr>
<tr>
<td>AQ7</td>
<td>0.037</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.046</td>
<td>482.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.23</td>
<td>60.4</td>
</tr>
<tr>
<td>AQ8</td>
<td>0.040</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.075</td>
<td>707.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>53.3</td>
</tr>
<tr>
<td>AQ9</td>
<td>0.145</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.056</td>
<td>666.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.18</td>
<td>59.2</td>
</tr>
<tr>
<td>AQ10</td>
<td>0.060</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.187</td>
<td>332.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>60.2</td>
</tr>
<tr>
<td>AQ11</td>
<td>0.041</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.085</td>
<td>314.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>59.1</td>
</tr>
<tr>
<td>AQ12</td>
<td>0.102</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.101</td>
<td>312.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>54.8</td>
</tr>
<tr>
<td>AQ13</td>
<td>0.140</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.203</td>
<td>341.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>62.9</td>
</tr>
<tr>
<td>AQ14</td>
<td>0.168</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.103</td>
<td>401.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>63.0</td>
</tr>
<tr>
<td>AQ15</td>
<td>0.158</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.113</td>
<td>436.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>54.5</td>
</tr>
<tr>
<td>AQ16</td>
<td>0.078</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td>0.114</td>
<td>336.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>55.8</td>
</tr>
<tr>
<td>AQ17</td>
<td>0.174</td>
<td>0.00</td>
<td>1.13</td>
<td>1.13</td>
<td>0.126</td>
<td>852.00</td>
<td>0.11</td>
<td>0.14</td>
<td>0.19</td>
<td>70.9</td>
</tr>
<tr>
<td>AQ18</td>
<td>0.061</td>
<td>0.00</td>
<td>0.10</td>
<td>0.01</td>
<td>0.122</td>
<td>675.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>57.4</td>
</tr>
<tr>
<td>AQ19*</td>
<td>0.220</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.214</td>
<td>440.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>52.1</td>
</tr>
<tr>
<td>AQ20*</td>
<td>0.191</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.007</td>
<td>634.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>54.6</td>
</tr>
<tr>
<td>Min.</td>
<td>0.037</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.007</td>
<td>312.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>51.5</td>
</tr>
<tr>
<td>Max.</td>
<td>0.220</td>
<td>0.00</td>
<td>1.01</td>
<td>0.13</td>
<td>0.241</td>
<td>852.00</td>
<td>0.140</td>
<td>0.140</td>
<td>0.250</td>
<td>76.90</td>
</tr>
<tr>
<td>Mean</td>
<td>0.108</td>
<td>0.00</td>
<td>0.11</td>
<td>0.114</td>
<td>0.125</td>
<td>544.14</td>
<td>0.018</td>
<td>0.013</td>
<td>0.116</td>
<td>58.38</td>
</tr>
</tbody>
</table>

Source: EnvAccord: Wet Season Field Survey 2014

*Taken along the PASL proposed transmission route.

AQ 5: Gangi primary school located within 1km from the center of the project site (not functional at the time of survey)
AQ 13 (control 1): Kauyan Maina Village
AQ 14 (control 2): Along Gurara Dutsima road
AQ 17: Kankia Market close to a busy road
Table 4.4: Air Quality and Noise Measurement (Dry season)

<table>
<thead>
<tr>
<th>S/N</th>
<th>Sampling location</th>
<th>GPS</th>
<th>Dust</th>
<th>Noise & vibration</th>
<th>SO$_2$ mg/m3</th>
<th>CO mg/m3</th>
<th>NO$_2$ mg/m3</th>
<th>NH$_3$ mg/m3</th>
<th>Cl$_2$ mg/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KTA1</td>
<td>N12°34'08.4", E007°49'24.3"</td>
<td>0.50</td>
<td>69.7</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>KTA2</td>
<td>N12°34'14.8", E007°49'32.4"</td>
<td>0.50</td>
<td>65.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.45</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>KTA3</td>
<td>N12°34'34.0", E007°49'16.2"</td>
<td>0.50</td>
<td>67.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>KTA4</td>
<td>N12°34'28.9", E007°49'06.0"</td>
<td>0.51</td>
<td>65.7</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>KTA5</td>
<td>N12°34'19.5", E007°19.3"</td>
<td>0.50</td>
<td>67.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.31</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>KTA6</td>
<td>N12°34'26.7", E007°49'26.8"</td>
<td>0.50</td>
<td>55.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>7</td>
<td>KTA7</td>
<td>N12°34'13.3", E007°49'13.2"</td>
<td>0.52</td>
<td>65.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>FMEnv Limits</td>
<td>-</td>
<td>250</td>
<td>90dB(A)</td>
<td>0.5</td>
<td>5.0</td>
<td>0.085</td>
<td>0.20</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Source: EIA of 20 MW Photovoltaic Solar Power Project at Kankia
Table 4.5: Physico-chemical Parameters of Soil Samples (Wet Season)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>pH</th>
<th>Moisture (%)</th>
<th>Anions (mg/kg)</th>
<th>Heavy Metals (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO$_3^-$</td>
<td>SO$_4^{2-}$</td>
</tr>
<tr>
<td>SK1(0-15cm)</td>
<td>5.023</td>
<td>5.680</td>
<td>6.000</td>
<td>14.000</td>
</tr>
<tr>
<td>SK1(15-30cm)</td>
<td>6.113</td>
<td>5.000</td>
<td>4.000</td>
<td>11.000</td>
</tr>
<tr>
<td>SK2(0-15cm)</td>
<td>6.234</td>
<td>9.790</td>
<td>4.000</td>
<td>13.000</td>
</tr>
<tr>
<td>SK2(15-30cm)</td>
<td>5.578</td>
<td>13.300</td>
<td>2.000</td>
<td>14.000</td>
</tr>
<tr>
<td>SK3(0-15cm)</td>
<td>6.195</td>
<td>8.370</td>
<td>4.000</td>
<td>12.000</td>
</tr>
<tr>
<td>SK3(15-30cm)</td>
<td>6.211</td>
<td>2.060</td>
<td>1.000</td>
<td>10.000</td>
</tr>
<tr>
<td>SK4(0-15cm)</td>
<td>6.978</td>
<td>4.660</td>
<td>2.000</td>
<td>15.000</td>
</tr>
<tr>
<td>SK4(15-30cm)</td>
<td>7.098</td>
<td>4.410</td>
<td>2.000</td>
<td>12.000</td>
</tr>
<tr>
<td>SK5(0-15cm)</td>
<td>8.427</td>
<td>3.260</td>
<td>3.000</td>
<td>14.000</td>
</tr>
<tr>
<td>SK5(15-30cm)</td>
<td>7.744</td>
<td>2.210</td>
<td>4.000</td>
<td>10.000</td>
</tr>
<tr>
<td>SK6(0-15cm)</td>
<td>5.672</td>
<td>5.290</td>
<td>6.000</td>
<td>9.000</td>
</tr>
<tr>
<td>SK6(15-30cm)</td>
<td>5.375</td>
<td>2.610</td>
<td>3.000</td>
<td>8.000</td>
</tr>
<tr>
<td>SK7(0-15cm)</td>
<td>5.812</td>
<td>3.820</td>
<td>6.000</td>
<td>16.000</td>
</tr>
<tr>
<td>SK7(15-30cm)</td>
<td>5.296</td>
<td>2.810</td>
<td>4.000</td>
<td>28.000</td>
</tr>
<tr>
<td>SK8(0-15cm)</td>
<td>6.542</td>
<td>2.750</td>
<td>4.000</td>
<td>14.000</td>
</tr>
<tr>
<td>SK8(15-30cm)</td>
<td>5.845</td>
<td>4.840</td>
<td>5.000</td>
<td>16.000</td>
</tr>
<tr>
<td>SK9 (0-15cm)</td>
<td>5.411</td>
<td>2.460</td>
<td>6.000</td>
<td>14.000</td>
</tr>
<tr>
<td>SK9 (15-30cm)</td>
<td>6.192</td>
<td>3.560</td>
<td>4.000</td>
<td>12.000</td>
</tr>
<tr>
<td>SK10(0-15cm)</td>
<td>7.539</td>
<td>3.760</td>
<td>7.000</td>
<td>11.000</td>
</tr>
<tr>
<td>SK10(15-30cm)</td>
<td>6.795</td>
<td>5.480</td>
<td>4.000</td>
<td>10.000</td>
</tr>
<tr>
<td>SK11(0-15cm)</td>
<td>6.812</td>
<td>7.710</td>
<td>4.000</td>
<td>10.000</td>
</tr>
<tr>
<td>S11 (15-30cm)</td>
<td>6.289</td>
<td>11.060</td>
<td>3.000</td>
<td>8.000</td>
</tr>
<tr>
<td>SK12(0-15cm)</td>
<td>6.635</td>
<td>2.770</td>
<td>6.000</td>
<td>17.000</td>
</tr>
<tr>
<td>SK12(15-30cm)</td>
<td>6.521</td>
<td>1.330</td>
<td>5.000</td>
<td>13.000</td>
</tr>
<tr>
<td>SK13(0-15cm)</td>
<td>7.416</td>
<td>5.170</td>
<td>2.000</td>
<td>9.000</td>
</tr>
<tr>
<td>SK13(15-30cm)</td>
<td>7.624</td>
<td>4.580</td>
<td>4.000</td>
<td>13.000</td>
</tr>
<tr>
<td>Sample ID</td>
<td>pH</td>
<td>Moisture (%)</td>
<td>Anions (mg/kg)</td>
<td>Heavy Metals (mg/kg)</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO\textsubscript{3}</td>
<td>SO\textsubscript{4}2-</td>
</tr>
<tr>
<td>SK14 (0-15cm)</td>
<td>6.714</td>
<td>1.470</td>
<td>4.000</td>
<td>14.000</td>
</tr>
<tr>
<td>SK14 (15-30cm)</td>
<td>6.436</td>
<td>1.680</td>
<td>6.000</td>
<td>12.000</td>
</tr>
<tr>
<td>API (0-15cm)</td>
<td>6.417</td>
<td>1.140</td>
<td>3.000</td>
<td>13.000</td>
</tr>
<tr>
<td>API (15-30cm)</td>
<td>6.376</td>
<td>1.850</td>
<td>2.000</td>
<td>10.000</td>
</tr>
<tr>
<td>PDKK (0-15cm)</td>
<td>5.682</td>
<td>1.050</td>
<td>4.000</td>
<td>14.000</td>
</tr>
<tr>
<td>PDKK (15-30cm)</td>
<td>5.668</td>
<td>1.270</td>
<td>2.000</td>
<td>17.000</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field survey, 2014
Table 4.6: Microbiological Content of Soil Samples

<table>
<thead>
<tr>
<th>S/N</th>
<th>Sample code</th>
<th>Total Heterotrophic Bacteria/Total Plate Count</th>
<th>Total Heterotrophic Fungi</th>
<th>Total Coliforms</th>
<th>Total Hydrocarbon Utilizing Bacteria</th>
<th>Total Hydrocarbon Utilizing Fungi</th>
<th>% Percentage Hydrocarbon Utilizers</th>
<th>Predominant Species of Microorganisms Isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SK1 0-15 cm</td>
<td>1.890 x 10^8 cfu/ml</td>
<td>3.0 x 10^4 cfu/ml</td>
<td>1.40 x 10^2 cfu/ml</td>
<td>20.0 x 10^2 cfu/ml</td>
<td>1.0 x 10^2 cfu/ml</td>
<td>0.0106</td>
<td>Bacillus spp., Micrococcus spp., Escherichia coli, Rhizopus stolonifer, Penicillium spp.</td>
</tr>
<tr>
<td>2.</td>
<td>SK1 15-30 cm</td>
<td>1.640 x 10^8 cfu/ml</td>
<td>7.0 x 10^4 cfu/ml</td>
<td>0.00 cfu/ml</td>
<td>17.0 x 10^2 cfu/ml</td>
<td>4.0 x 10^2 cfu/ml</td>
<td>0.0104</td>
<td>Bacillus spp., Nocardia spp., Micrococcus spp, Geotrichum spp, Aspergillus niger.</td>
</tr>
<tr>
<td>3.</td>
<td>SK2 0-15 cm</td>
<td>2.270 x 10^8 cfu/ml</td>
<td>11.0 x 10^4 cfu/ml</td>
<td>0.00 cfu/ml</td>
<td>25.0 x 10^2 cfu/ml</td>
<td>6.0 x 10^2 cfu/ml</td>
<td>0.0107</td>
<td>Bacillus spp., Clostridium spp., Flavobacterium spp, Aspergillus fumigatus, Trichoderma spp, Fusarium spp.</td>
</tr>
<tr>
<td>4.</td>
<td>SK2 15-30 cm</td>
<td>1.380 x 10^8 cfu/ml</td>
<td>4.0 x 10^4 cfu/ml</td>
<td>0.00 cfu/ml</td>
<td>14.0 x 10^2 cfu/ml</td>
<td>1.0 x 10^2 cfu/ml</td>
<td>0.0101</td>
<td>Bacillus spp., Clostridium spp., Staphylococcus aureus, Mucor spp, Trichoderma spp.</td>
</tr>
<tr>
<td>5.</td>
<td>SK3 0-15 cm</td>
<td>2.710 x 10^8 cfu/gm</td>
<td>11.0 x 10^4 cfu/gm</td>
<td>1.40 x 10^3 cfu/gm</td>
<td>28.0 x 10^3 cfu/gm</td>
<td>2.0 x 10^3 cfu/gm</td>
<td>0.0103</td>
<td>Bacillus spp., Nocardia spp, Escherichia coli, Aspergillus niger, Penicillium spp, Mucor spp.</td>
</tr>
<tr>
<td>6.</td>
<td>SK3 15-30 cm</td>
<td>2.940 x 10^8 cfu/gm</td>
<td>7.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>32.0 x 10^3 cfu/gm</td>
<td>5.0 x 10^2 cfu/gm</td>
<td>0.0109</td>
<td>Bacillus spp., Corynebacterium spp, Fusarium spp, Trichoderma spp, Rhizopus stolonifer.</td>
</tr>
<tr>
<td>7.</td>
<td>SK4 0-15 cm</td>
<td>1.240 x 10^8 cfu/gm</td>
<td>12.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>13.0 x 10^3 cfu/gm</td>
<td>8.0 x 10^2 cfu/gm</td>
<td>0.0105</td>
<td>Bacillus spp., Flavobacterium spp, Aspergillus flavus, Penicillium spp.</td>
</tr>
<tr>
<td>8.</td>
<td>SK4 15-30 cm</td>
<td>1.870 x 10^8 cfu/gm</td>
<td>4.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>19.0 x 10^3 cfu/gm</td>
<td>1.0 x 10^2 cfu/gm</td>
<td>0.0102</td>
<td>Bacillus spp., Clostridium spp., Staphylococcus aureus, Mucor spp, Trichoderma spp.</td>
</tr>
<tr>
<td>9.</td>
<td>SK5 0-15 cm</td>
<td>1.960 x 10^8 cfu/gm</td>
<td>8.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>21.0 x 10^3 cfu/gm</td>
<td>4.0 x 10^2 cfu/gm</td>
<td>0.0106</td>
<td>Bacillus spp., Pseudomonas aeruginosa, Micrococcus spp, Penicillium spp, Aspergillus niger.</td>
</tr>
<tr>
<td>10.</td>
<td>SK5 15-30 cm</td>
<td>2.810 x 10^8 cfu/gm</td>
<td>5.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>30.0 x 10^3 cfu/gm</td>
<td>4.0 x 10^2 cfu/gm</td>
<td>0.0107</td>
<td>Bacillus spp., Corynebacterium spp, Mucor spp, Fusarium spp, Aspergillus wentii.</td>
</tr>
<tr>
<td>11.</td>
<td>SK6 0-15 cm</td>
<td>1.550 x 10^8 cfu/gm</td>
<td>6.0 x 10^4 cfu/gm</td>
<td>1.30 x 10^3 cfu/gm</td>
<td>16.0 x 10^3 cfu/gm</td>
<td>1.0 x 10^2 cfu/gm</td>
<td>0.0103</td>
<td>Bacillus spp., Micrococcus spp, Escherichia coli, Rhizopus stolonifer, Penicillium spp.</td>
</tr>
<tr>
<td>12.</td>
<td>SK6 15-30 cm</td>
<td>1.880 x 10^8 cfu/gm</td>
<td>4.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>20.0 x 10^3 cfu/gm</td>
<td>3.0 x 10^2 cfu/gm</td>
<td>0.0106</td>
<td>Bacillus spp., Nocardia spp, Aspergillus fumigatus, Trichoderma spp, Fusarium spp.</td>
</tr>
<tr>
<td>13.</td>
<td>SK7 2.790 x 10^8</td>
<td>7.0 x 10^4</td>
<td>0.00</td>
<td>29.0 x 10^3</td>
<td>2.0 x 10^2</td>
<td>0.0104</td>
<td>Bacillus spp., Nocardia spp,</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>Sample code</td>
<td>Total Heterotrophic Bacteria/Total Plate Count</td>
<td>Total Heterotrophic Fungi</td>
<td>Total Coliforms</td>
<td>Total Hydrocarbon Utilizing Bacteria</td>
<td>Total Hydrocarbon Utilizing Fungi</td>
<td>% Hydrocarbon Utilizers</td>
<td>Predominant Species of Microorganisms Isolated</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>SK7 15-30 cm</td>
<td>1.640 x 10^6 cfu/gm</td>
<td>12.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>18.0 x 10^3 cfu/gm</td>
<td>5.0 x 10^3 cfu/gm</td>
<td>0.0109</td>
<td>Bacillus spp., Flavobacterium spp., Microoccus spp., Geotrichum spp., Aspergillus niger.</td>
</tr>
<tr>
<td>15</td>
<td>SK8 0-15 cm</td>
<td>1.830 x 10^6 cfu/gm</td>
<td>6.0 x 10^4 cfu/gm</td>
<td>1.30 x 10^2 cfu/gm</td>
<td>20.0 x 10^1 cfu/gm</td>
<td>4.0 x 10^2 cfu/gm</td>
<td>0.0109</td>
<td>Bacillus spp., Pseudomonas aeruginosa, Escherichia coli, Aspergillus fumigatus, Trichoderma spp.</td>
</tr>
<tr>
<td>16</td>
<td>SK8 15-30 cm</td>
<td>1.800 x 10^6 cfu/gm</td>
<td>13.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>12.0 x 10^1 cfu/gm</td>
<td>1.0 x 10^2 cfu/gm</td>
<td>0.0102</td>
<td>Bacillus spp., Clostridium spp., Saccharomyces spp., Fusarium spp., Mucor spp.</td>
</tr>
<tr>
<td>17</td>
<td>SK9 0-15 cm</td>
<td>2.750 x 10^6 cfu/gm</td>
<td>10.0 x 10^4 cfu/gm</td>
<td>1.40 x 10^3 cfu/gm</td>
<td>28.0 x 10^1 cfu/gm</td>
<td>3.0 x 10^2 cfu/gm</td>
<td>0.0010</td>
<td>Bacillus spp., Corynebacterium spp., Escherichia coli, Aspergillus fumigatus, Penicillium spp., Fusarium spp.</td>
</tr>
<tr>
<td>18</td>
<td>SK9 15-30 cm</td>
<td>2.480 x 10^6 cfu/gm</td>
<td>6.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>25.0 x 10^1 cfu/gm</td>
<td>5.0 x 10^2 cfu/gm</td>
<td>0.0101</td>
<td>Bacillus spp., Micrococcus spp., Nocardia spp., Saccharomyces spp., Rhizopus stolonifer, Penicillium spp.</td>
</tr>
<tr>
<td>19</td>
<td>SK10 15-30 cm</td>
<td>2.990 x 10^6 cfu/gm</td>
<td>8.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>31.0 x 10^1 cfu/gm</td>
<td>7.0 x 10^2 cfu/gm</td>
<td>0.0014</td>
<td>Bacillus spp., Micrococcus spp., Nocardia spp., Saccharomyces spp., Rhizopus stolonifer, Penicillium spp.</td>
</tr>
<tr>
<td>20</td>
<td>SK10 15-30 cm</td>
<td>1.530 x 10^6 cfu/gm</td>
<td>7.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>16.0 x 10^1 cfu/gm</td>
<td>4.0 x 10^2 cfu/gm</td>
<td>0.0015</td>
<td>Bacillus spp., Clostridium spp., Flavobacterium spp., Aspergillus fumigatus, Trichoderma spp., Fusarium spp.</td>
</tr>
<tr>
<td>21</td>
<td>SK11 0-15 cm</td>
<td>2.190 x 10^6 cfu/gm</td>
<td>5.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>23.0 x 10^1 cfu/gm</td>
<td>2.0 x 10^3 cfu/gm</td>
<td>0.0015</td>
<td>Bacillus spp., Corynebacterium spp., Rhizopus stolonifer, Trichoderma spp.</td>
</tr>
<tr>
<td>22</td>
<td>SK11 15-30 cm</td>
<td>1.630 x 10^6 cfu/gm</td>
<td>4.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>17.0 x 10^1 cfu/gm</td>
<td>1.0 x 10^3 cfu/gm</td>
<td>0.0104</td>
<td>Bacillus spp., Nocardia spp., Rhizopus stolonifer, Geotrichum spp., Fusarium spp.</td>
</tr>
<tr>
<td>23</td>
<td>SK12 0-15 cm</td>
<td>1.930 x 10^6 cfu/gm</td>
<td>10.0 x 10^4 cfu/gm</td>
<td>1.50 x 10^2 cfu/gm</td>
<td>20.0 x 10^1 cfu/gm</td>
<td>6.0 x 10^2 cfu/gm</td>
<td>0.0104</td>
<td>Bacillus spp., Pseudomonas aeruginosa, Escherichia coli, Penicillium spp., Aspergillus niger.</td>
</tr>
<tr>
<td>24</td>
<td>SK12 15-30 cm</td>
<td>1.250 x 10^6 cfu/gm</td>
<td>8.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>13.0 x 10^1 cfu/gm</td>
<td>5.0 x 10^2 cfu/gm</td>
<td>0.0104</td>
<td>Bacillus spp., Clostridium spp., Aspergillus fumigatus, Trichoderma spp., Fusarium spp.</td>
</tr>
<tr>
<td>25</td>
<td>SK13 0-15 cm</td>
<td>2.460 x 10^6 cfu/gm</td>
<td>12.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>25.0 x 10^1 cfu/gm</td>
<td>5.0 x 10^3 cfu/gm</td>
<td>0.0102</td>
<td>Bacillus spp., Lactobacillus spp., Clostridium spp., Geotrichum spp., Trichoderma spp., Fusarium spp.</td>
</tr>
<tr>
<td>26</td>
<td>SK13 15-30 cm</td>
<td>1.790 x 10^6 cfu/gm</td>
<td>7.0 x 10^4 cfu/gm</td>
<td>1.40 X 10^3 cfu/gm</td>
<td>18.0 x 10^1 cfu/gm</td>
<td>4.0 x 10^3 cfu/gm</td>
<td>0.0101</td>
<td>Bacillus spp., Pseudomonas aeruginosa, Escherichia coli, Penicillium spp., Aspergillus niger.</td>
</tr>
<tr>
<td>S/N</td>
<td>Sample code</td>
<td>Total Heterotrophic Bacteria/Total Plate Count</td>
<td>Total Heterotrophic Fungi</td>
<td>Total Coliforms</td>
<td>Total Hydrocarbon Utilizing Bacteria</td>
<td>Total Hydrocarbon Utilizing Fungi</td>
<td>% Percentage Hydrocarbon Utilizers</td>
<td>Predominant Species of Microorganisms Isolated</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---</td>
<td>--------------------------</td>
<td>----------------</td>
<td>------------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>27</td>
<td>SK14 0-15 cm</td>
<td>1.980 x 10^8 cfu/gm</td>
<td>3.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>20.0 x 10^1 cfu/gm</td>
<td>2.0 x 10^3 cfu/gm</td>
<td>0.0101</td>
<td>Bacillus spp., Corynebacterium spp., Flavobacterium spp., Rhizopus stolonifer, Trichoderma spp.</td>
</tr>
<tr>
<td>28</td>
<td>SK14 15-30 cm</td>
<td>1.370 x 10^6 cfu/gm</td>
<td>6.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>14.0 x 10^1 cfu/gm</td>
<td>3.0 x 10^3 cfu/gm</td>
<td>0.0102</td>
<td>Bacillus spp., Flavobacterium spp., Micrococcus spp., Aspergillus fumigatus, Penicillus spp., Mucor spp.</td>
</tr>
<tr>
<td>29</td>
<td>AP1 0-15 cm</td>
<td>2.870 x 10^6 cfu/gm</td>
<td>13.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>29.0 x 10^1 cfu/gm</td>
<td>6.0 x 10^3 cfu/gm</td>
<td>0.0101</td>
<td>Bacillus spp., Nocardia spp., Micrococcus spp., Aspergillus fumigatus, Rhizopus stolonifer, Trichoderma spp.</td>
</tr>
<tr>
<td>30</td>
<td>AP1 15-30 cm</td>
<td>2.090 x 10^6 cfu/gm</td>
<td>8.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>22.0 x 10^1 cfu/gm</td>
<td>3.0 x 10^3 cfu/gm</td>
<td>0.0105</td>
<td>Bacillus spp., Pseudomonas aeruginosa, Mucor spp., Geotrichum spp., Penicillium spp.</td>
</tr>
<tr>
<td>31</td>
<td>PDKK 1931 0-15 cm</td>
<td>2.190 x 10^6 cfu/gm</td>
<td>5.0 x 10^4 cfu/gm</td>
<td>1.50 x 10^3 cfu/gm</td>
<td>23.0 x 10^1 cfu/gm</td>
<td>2.0 x 10^3 cfu/gm</td>
<td>0.0105</td>
<td>Bacillus spp., Micrococcus spp., Escherichia coli, Aspergillus coli, Aspergillus wentii, Rhizopus stolonifer, Penicillium spp.</td>
</tr>
<tr>
<td>32</td>
<td>PDKK 1931 15-30 cm</td>
<td>1.660 x 10^6 cfu/gm</td>
<td>6.0 x 10^4 cfu/gm</td>
<td>0.00 cfu/gm</td>
<td>18.0 x 10^1 cfu/gm</td>
<td>2.0 x 10^3 cfu/gm</td>
<td>0.0108</td>
<td>Bacillus spp., Corynebacterium spp., Lactobacillus spp., Aspergillus flavus, Trichoderma spp., Fusarium spp.</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field Survey, October 2014
Table 4.7: Soil Texture of the study area

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Clay (%)</th>
<th>Silt (%)</th>
<th>Sand (%)</th>
<th>Bulk Density g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK1(0-15cm)</td>
<td>5.870</td>
<td>1.470</td>
<td>92.660</td>
<td>1.36</td>
</tr>
<tr>
<td>SK1(15-30cm)</td>
<td>4.760</td>
<td>1.070</td>
<td>94.170</td>
<td>1.621</td>
</tr>
<tr>
<td>SK2(0-15cm)</td>
<td>10.850</td>
<td>2.160</td>
<td>86.990</td>
<td>1.745</td>
</tr>
<tr>
<td>SK2(15-30cm)</td>
<td>11.270</td>
<td>4.640</td>
<td>84.090</td>
<td>1.207</td>
</tr>
<tr>
<td>SK3(0-15cm)</td>
<td>10.630</td>
<td>1.790</td>
<td>87.580</td>
<td>1.207</td>
</tr>
<tr>
<td>SK3(15-30cm)</td>
<td>5.120</td>
<td>2.490</td>
<td>92.390</td>
<td>1.161</td>
</tr>
<tr>
<td>SK4(0-15cm)</td>
<td>20.130</td>
<td>5.480</td>
<td>74.390</td>
<td>1.254</td>
</tr>
<tr>
<td>SK4(15-30cm)</td>
<td>13.290</td>
<td>6.310</td>
<td>80.400</td>
<td>1.201</td>
</tr>
<tr>
<td>SK5(0-15cm)</td>
<td>11.540</td>
<td>5.790</td>
<td>82.670</td>
<td>1.589</td>
</tr>
<tr>
<td>SK5(15-30cm)</td>
<td>13.480</td>
<td>4.330</td>
<td>82.190</td>
<td>1.036</td>
</tr>
<tr>
<td>SK6(0-15cm)</td>
<td>11.240</td>
<td>1.280</td>
<td>87.480</td>
<td>1.339</td>
</tr>
<tr>
<td>SK6(15-30cm)</td>
<td>13.410</td>
<td>1.090</td>
<td>85.510</td>
<td>1.312</td>
</tr>
<tr>
<td>SK7(0-15cm)</td>
<td>8.620</td>
<td>2.150</td>
<td>89.230</td>
<td>1.06</td>
</tr>
<tr>
<td>SK7(15-37cm)</td>
<td>7.730</td>
<td>1.320</td>
<td>90.950</td>
<td>1.085</td>
</tr>
<tr>
<td>SK8(0-15cm)</td>
<td>8.450</td>
<td>0.960</td>
<td>90.590</td>
<td>1.366</td>
</tr>
<tr>
<td>SK8(15-30cm)</td>
<td>7.690</td>
<td>1.080</td>
<td>91.230</td>
<td>1.337</td>
</tr>
<tr>
<td>SK9(0-15cm)</td>
<td>6.430</td>
<td>2.150</td>
<td>91.420</td>
<td>1.699</td>
</tr>
<tr>
<td>SK9(15-30cm)</td>
<td>5.260</td>
<td>2.060</td>
<td>92.680</td>
<td>1.676</td>
</tr>
<tr>
<td>SK10(0-15cm)</td>
<td>10.600</td>
<td>3.370</td>
<td>86.030</td>
<td>1.189</td>
</tr>
<tr>
<td>SK10(15-30cm)</td>
<td>11.160</td>
<td>2.950</td>
<td>85.890</td>
<td>1.334</td>
</tr>
<tr>
<td>SK11(0-15cm)</td>
<td>8.930</td>
<td>1.490</td>
<td>89.580</td>
<td>1.108</td>
</tr>
<tr>
<td>SK11(15-30cm)</td>
<td>8.590</td>
<td>3.500</td>
<td>87.910</td>
<td>1.015</td>
</tr>
<tr>
<td>SK12(0-15cm)</td>
<td>7.530</td>
<td>1.380</td>
<td>91.090</td>
<td>0.691</td>
</tr>
<tr>
<td>SK12(15-30cm)</td>
<td>12.430</td>
<td>1.520</td>
<td>86.050</td>
<td>0.783</td>
</tr>
<tr>
<td>SK13(0-15cm)</td>
<td>7.830</td>
<td>1.380</td>
<td>90.790</td>
<td>1.381</td>
</tr>
<tr>
<td>SK13(15-30cm)</td>
<td>6.070</td>
<td>1.260</td>
<td>91.870</td>
<td>1.237</td>
</tr>
<tr>
<td>SK14(0-15cm)</td>
<td>5.720</td>
<td>0.930</td>
<td>93.350</td>
<td>1.157</td>
</tr>
<tr>
<td>SK14(15-30cm)</td>
<td>5.830</td>
<td>1.160</td>
<td>93.010</td>
<td>1.261</td>
</tr>
<tr>
<td>API (0-15cm)</td>
<td>13.130</td>
<td>1.280</td>
<td>85.590</td>
<td>1.323</td>
</tr>
<tr>
<td>API (15-30cm)</td>
<td>8.640</td>
<td>0.780</td>
<td>90.580</td>
<td>1.274</td>
</tr>
<tr>
<td>PKKK(0-15cm)</td>
<td>9.710</td>
<td>3.920</td>
<td>86.370</td>
<td>1.715</td>
</tr>
<tr>
<td>PKKK (15-30cm)</td>
<td>8.610</td>
<td>1.060</td>
<td>90.330</td>
<td>1.614</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field survey, October 2014
Table 4.8: Results of Soil Samples from the study area (Dry Season)

<table>
<thead>
<tr>
<th>S/N</th>
<th>Parameters</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KTS1</td>
</tr>
<tr>
<td>1</td>
<td>Appearance</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>Soil Type</td>
<td>Loam</td>
</tr>
<tr>
<td>3</td>
<td>pH</td>
<td>6.3</td>
</tr>
<tr>
<td>4</td>
<td>Moisture (%)</td>
<td>1.94</td>
</tr>
<tr>
<td>5</td>
<td>Porosity (%)</td>
<td>0.044</td>
</tr>
<tr>
<td>6</td>
<td>Bulk Density (g/mL)</td>
<td>1.54</td>
</tr>
<tr>
<td>7</td>
<td>Base Saturation (%)</td>
<td>63.50</td>
</tr>
<tr>
<td>8</td>
<td>Organic Carbon (g/kg)</td>
<td>7.05</td>
</tr>
<tr>
<td>9</td>
<td>Organic Matter (g/kg)</td>
<td>12.15</td>
</tr>
<tr>
<td>10</td>
<td>Oil and Grease (mg/L)</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>Potassium (mg/L)</td>
<td>2.09</td>
</tr>
<tr>
<td>12</td>
<td>Total Phosphorous (g/kg)</td>
<td>1.10</td>
</tr>
<tr>
<td>13</td>
<td>Calcium (g/kg)</td>
<td>0.80</td>
</tr>
<tr>
<td>14</td>
<td>Magnesium (g/kg)</td>
<td>0.30</td>
</tr>
<tr>
<td>15</td>
<td>Zinc (mg/L)</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>Total Hydrocarbon Content</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>Sand</td>
<td>697</td>
</tr>
<tr>
<td>18</td>
<td>Silt</td>
<td>160</td>
</tr>
<tr>
<td>19</td>
<td>Clay</td>
<td>243</td>
</tr>
</tbody>
</table>

Source: EIA of 20 MW Photovoltaic Solar Power Project at Kankia
Table 4.16: Physico-chemical characteristics of groundwater samples from the study area (wet season)

<table>
<thead>
<tr>
<th>Parameter/Unit</th>
<th>KGW1</th>
<th>KGW2</th>
<th>KGW3</th>
<th>KGW4</th>
<th>WHO LIMITS</th>
<th>FMEnv. Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Highest Desired Level</td>
<td>Max. Permissible Level</td>
</tr>
<tr>
<td>pH</td>
<td>6.86</td>
<td>6.77</td>
<td>6.66</td>
<td>7.68</td>
<td>7.0-8.5</td>
<td>6.5-9.2</td>
</tr>
<tr>
<td>Conductivity, µS/cm</td>
<td>183.70</td>
<td>368.00</td>
<td>476.00</td>
<td>530.00</td>
<td>NS</td>
<td>1000</td>
</tr>
<tr>
<td>Turbidity (mg/l)</td>
<td>0.68</td>
<td>0.91</td>
<td>0.82</td>
<td>1.64</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Hardness, mg/l</td>
<td>98.64</td>
<td>108.41</td>
<td>86.74</td>
<td>110.65</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Temperature, ºC</td>
<td>29.8</td>
<td>29.2</td>
<td>32.2</td>
<td>30.9</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Total Dissolved Solids, mg/l</td>
<td>93.70</td>
<td>184.00</td>
<td>234.00</td>
<td>264.00</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>Salinity, ppt</td>
<td>0.07</td>
<td>0.13</td>
<td>0.31</td>
<td>0.19</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>DO, mg/l</td>
<td>4.84</td>
<td>4.97</td>
<td>4.75</td>
<td>4.50</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>COD, mg/l</td>
<td>64.00</td>
<td>128.00</td>
<td>96.00</td>
<td>96.00</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>BOD, mg/l</td>
<td>2.02</td>
<td>1.88</td>
<td>1.34</td>
<td>1.68</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Total Suspended Solids, mg/l</td>
<td>2.12</td>
<td>0.68</td>
<td>1.20</td>
<td>1.78</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Nitrate, mg/l</td>
<td>3.00</td>
<td>2.00</td>
<td>3.00</td>
<td>2.00</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Sulphate, mg/l</td>
<td>15.00</td>
<td>25.00</td>
<td>16.00</td>
<td>30.00</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Phosphate, mg/l</td>
<td>7.00</td>
<td>4.00</td>
<td>4.00</td>
<td>3.00</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Potassium, mg/l</td>
<td>4.10</td>
<td>3.80</td>
<td>3.60</td>
<td>4.70</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Oil and Grease, mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Lead, mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Copper, mg/l</td>
<td>0.01</td>
<td>0.11</td>
<td>0.10</td>
<td>0.03</td>
<td>0.05</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field work, October 2014
ND=Not Detected NS= Not Specified
Table 4.17: Microbial characteristics of groundwater samples from the study area (wet season)

<table>
<thead>
<tr>
<th>S/N</th>
<th>Sample code</th>
<th>Total Heterotrophic Bacteria (cfu/ml)</th>
<th>Total Heterotrophic Fungi (cfu/ml)</th>
<th>Total Coliforms (cfu/ml)</th>
<th>Total hydrocarbon utilizing bacteria (cfu/ml)</th>
<th>Total hydrocarbon utilizing fungi (cfu/ml)</th>
<th>Predominant species of microorganisms isolated cfu/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KGW1</td>
<td>1.890 x 10^2 cfu/ml</td>
<td>3.0 x 10 cfu/ml</td>
<td>1.40 cfu/ml</td>
<td>ND</td>
<td>ND</td>
<td>Bacillus spp., Nocardia spp., Pseudomonas aeruginosa, Escherichia coli, Rhizopus stolonifer, Penicillium spp.</td>
</tr>
<tr>
<td>2</td>
<td>KGW2</td>
<td>1.640 x 10^2 cfu/ml</td>
<td>7.0 x 10 cfu/ml</td>
<td>0.00 cfu/ml</td>
<td>ND</td>
<td>ND</td>
<td>Bacillus spp., Micrococcus spp., Aspergillus wentii, Geotrichum spp.</td>
</tr>
<tr>
<td>3</td>
<td>KGW3</td>
<td>2.270 x 10^2 cfu/ml</td>
<td>11.0 x 10 cfu/ml</td>
<td>0.00 cfu/ml</td>
<td>ND</td>
<td>ND</td>
<td>Bacillus spp., Clostridium spp., Nocardia spp., Saccharomyces spp., Fusarium spp., Trichoderma spp.</td>
</tr>
<tr>
<td>4</td>
<td>KGW3</td>
<td>1.380 x 10^2 cfu/ml</td>
<td>4.0 x 10 cfu/ml</td>
<td>0.00 cfu/ml</td>
<td>ND</td>
<td>ND</td>
<td>Bacillus spp., Flavobacterium spp., Staphylococcus aureus, Aspergillus niger, Mucor spp.</td>
</tr>
</tbody>
</table>

Source: EnvAccord Field work, October 2014
Table 4.19: Groundwater Analysis Results (dry season)

<table>
<thead>
<tr>
<th>S/N</th>
<th>Parameter</th>
<th>Borehole</th>
<th>Well</th>
<th>Dam</th>
<th>FMEnv Limit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PHYSICAL TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Appearance</td>
<td>Clear</td>
<td>Clear</td>
<td>Milky</td>
<td>NS</td>
<td>Observed</td>
</tr>
<tr>
<td>2</td>
<td>pH</td>
<td>7.32</td>
<td>7.10</td>
<td>7.91</td>
<td>6-9</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>3</td>
<td>Turbidity</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Odour</td>
<td>Odourless</td>
<td>Odourless</td>
<td>Odourless</td>
<td>NS</td>
<td>Observed</td>
</tr>
<tr>
<td>5</td>
<td>Salinity (%)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Conductivity (µS)</td>
<td>110.5</td>
<td>87.0</td>
<td>28.0</td>
<td>50-125</td>
<td>Within Limit</td>
</tr>
<tr>
<td>7</td>
<td>TDS (mg/L)</td>
<td>48</td>
<td>53</td>
<td>99</td>
<td>2000</td>
<td>Within Limit</td>
</tr>
<tr>
<td>8</td>
<td>TSS (mg/L)</td>
<td>1.20</td>
<td>1.25</td>
<td>5.63</td>
<td>30</td>
<td>Within Limit</td>
</tr>
<tr>
<td>9</td>
<td>Dissolved Oxygen (mg/L)</td>
<td>2.90</td>
<td>2.82</td>
<td>2.10</td>
<td>>4</td>
<td>Within Limit</td>
</tr>
<tr>
<td>10</td>
<td>Temperature</td>
<td>26.5°C</td>
<td>26.5°C</td>
<td>34.6°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Chemical Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Total Phosphorus (mg/L)</td>
<td>0.70</td>
<td>0.70</td>
<td>2.54</td>
<td>5</td>
<td>Within Limit</td>
</tr>
<tr>
<td>12</td>
<td>Total Chlorine (mg/L)</td>
<td>09.87</td>
<td>10.00</td>
<td>15.00</td>
<td><1</td>
<td>Within Limit</td>
</tr>
<tr>
<td>C</td>
<td>Organics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Oil and Grease (mg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>10</td>
<td>Within Limit</td>
</tr>
<tr>
<td>14</td>
<td>COD (mg/L)</td>
<td>09.45</td>
<td>09.13</td>
<td>12.22</td>
<td>50</td>
<td>Within Limit</td>
</tr>
<tr>
<td>15</td>
<td>BOD (mg/L)</td>
<td>10.00</td>
<td>09.13</td>
<td>10.90</td>
<td>40</td>
<td>Within Limit</td>
</tr>
<tr>
<td>16</td>
<td>Phenol (mg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>17</td>
<td>Total Coliform MPN/100ml</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NS</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>18</td>
<td>THC (mg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>24</td>
<td>Within Limit</td>
</tr>
<tr>
<td>D</td>
<td>Heavy Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Nitrate (mg/L)</td>
<td>1.20</td>
<td>13.20</td>
<td>2.21</td>
<td>20</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>20</td>
<td>Chromium (mg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td><1</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>21</td>
<td>Lead (mg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td><1</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>22</td>
<td>Cadmium (mg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td><1</td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>

Source: EIA of 20 MW Photovoltaic Solar Power Project at Kankia
Table 4.20: Floristic Composition and Habitat Description

<table>
<thead>
<tr>
<th>SAMPLE LOCATIONS</th>
<th>GPS CO-ORDINATES</th>
<th>REMARKS</th>
<th>SPECIES ENCOUNTERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASL E1</td>
<td>7.81656, 12.5569</td>
<td>Grazing land dominated by Cassia occidentalis, Pennisetum glaucum and Acacia nilotica</td>
<td>Acacia nilotica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acrosticum aureum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amaranthus viridis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Azadiracta indica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calopogonium mucunoides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cassia obtusifolia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Celosia argentea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Corchorus olitoriu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dichrostachys cinerea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eucalyptus camaldulensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glycine max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jatropha curcas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lawsonia inermis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mimosa pudica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parkia biglobulosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pennisetum glaucum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phaseolus vulgaris</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piliostigma reticulatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Psidium guajava</td>
</tr>
<tr>
<td>PASL E2</td>
<td>7.78827, 12.5647</td>
<td>Farmland dominated with plantations of Lycopersicon esculentum, Glycine max, Phaseolus vulgaris, Pennisetum glaucum and Capsicum sp.</td>
<td>Acacia nilotica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anogeissus leiocarpa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arachis hypogaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Azadiracta indica</td>
</tr>
<tr>
<td>SAMPLE LOCATIONS</td>
<td>GPS CO-ORDINATES</td>
<td>REMARKS</td>
<td>SPECIES ENCOUNTERED</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bolanites aegyiaca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Borassus aethiopum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calopogonium mucunoides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capsicum sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cassia obtusifolia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cassia occidentalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diospyros mespiliformis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eucalyptus camaldulensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Euphobia hirta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Faidherbia albida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glycine max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hyphaene thebaica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ipomoea batatas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lycopersicon esculentum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mangifera indica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parkia bigoglobosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pennisetum glaucum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phaseolus vulgaris</td>
</tr>
<tr>
<td>SAMPLE LOCATIONS</td>
<td>GPS CO-ORDINATES</td>
<td>REMARKS</td>
<td>SPECIES ENCOUNTERED</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| PASL E3 | 7.84182, 12.5878| Grazing land dominated by *Cassia sieberiana* and *Combretum micrathum* | *Sesamum Indicum*
| | | | *Sida acuta* |
| | | | *Sorghum bicolor* |
| | | | *Spigelia anthelmia*|
| | | | *Vitellaria paradoxa*|
| PASL E4 | 7.82, 12.5828 | Grazing land dominated by *Combretum micrathum, Cassia occidentalis* and *Balanites aegyptiaca* | *Acacia nilotica*
| | | | *Acroicicum aureum*
| | | | *Aleo buettneri* |
| | | | *Cassia obtusifolia*|
| | | | *Cassia sieberiana* |
| | | | *Combretum micrathum* |
| | | | *Guiera senegalensis* |
| | | | *Anogeissus leiocarpa* |
| | | | *Azadiracta indica*
<p>| | | | Balanites aegyptiaca |
| | | | Calopogonium mucunoides |
| | | | Cassia obtusifolia |
| | | | Cassia occidentalis |
| | | | Combretum micrathum |
| | | | Diospyros mespiliformis |
| | | | Guiera sensgalensis |
| | | | Jatropha curcas |
| | | | Ludwigia peruviana |
| | | | Monochoria vaginalis |</p>
<table>
<thead>
<tr>
<th>SAMPLE LOCATIONS</th>
<th>GPS CO-ORDINATES</th>
<th>REMARKS</th>
<th>SPECIES ENCOUNTERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASL E5</td>
<td>7.78112, 12.5299</td>
<td>Abandoned farmland dominated by Acacia nilotica, Sorghum bicolor and Cassia occidentalis</td>
<td>Moringa oleifera
Nympheae lotus
Paspalum virginatum
Piliostigma reticulatum
Sida acuta
Sorghum bicolor
Ziziphus mauritiana
Acacia nilotica
Anacardium occidentale
Anogeissus leiocarpa
Azadiracta indica
Bridellia farruginea
Calopogonium mucunoides
Cassia obtusiflora
Cassia obtusiflora
Cassia occidentalis
Cassia occidentalis
Commiphora africana
Glycine max
Gmelina indica
Parkia biglobosa
Parkia biglobosa
Pterocarpus schreberiana
Parkia biglobosa
Pterocarpus santalinus
Ziziphus mauritiana</td>
</tr>
<tr>
<td>PASL E6</td>
<td>7.81387, 12.5369</td>
<td>Grazing land dominated by Cassia occidentalis and Acacia nilotica</td>
<td>Ceiba petantra
Combretum micranthum
Eucalyptus camaldulensis
Parkia biglobosa</td>
</tr>
<tr>
<td>SAMPLE LOCATIONS</td>
<td>GPS CO-ORDINATES</td>
<td>REMARKS</td>
<td>SPECIES ENCOUNTERED</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| PASL E7 | 7.84215, 12.5684| Grazing land dominated by *cassia sieberiana* and *combretum micrathum*, *Cassia occidentalis* | *Pennisetum glaucum*
Sida acuta
Acacia nilotica |
| | | Farmland dominated by *Sorghum bicolor*, *Cassia occidentalis*, *Azadiracta indica* and *piliostigma reticulatum* | *Azadiracta indica*
Balanites aegyptiaca
Calopogonium mucunoides
Cassia obtusifolia
Cassia occidentalis
cassia sieberiana
combretum micrathum
Delonix regia
Gmelina arborea
guiera senegalensi
Moringa oleifera
Olea europaea
Sida acuta
Phaseolus vulgaris
Sesamum Indicum |
| PASL E8 | 7.77777, 12.5986| | *Acacia nilotica*
Azadiracta indica
Borassus aethiopum
Calopogonium mucunoides
Calotropis procera
Eucalyptus camaldulensis
Mangifera indica
parkia biglobosa
Phaseolus vulgaris
piliostigma reticulatum
Sesamum indicum |
<table>
<thead>
<tr>
<th>SAMPLE LOCATIONS</th>
<th>GPS CO-ORDINATES</th>
<th>REMARKS</th>
<th>SPECIES ENCOUNTERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASL E9</td>
<td>7.8233, 12.5706</td>
<td>Grazing land dominated by and Acacia nilotica combretum micrathum, Cassia occidentalis</td>
<td>Sida acuta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sorghum bicolor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acacia nilotica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Balanites aegyptiaca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calopogonium mucunoides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cassia obtusifolia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cassia occidentalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cassia sieberiana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cassia singueana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>combretum micrathum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>guiera senegalensi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Olea europaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sida acuta</td>
</tr>
</tbody>
</table>
APPENDIX 10

GEOTECHNICAL SURVEY REPORT
Geological Evaluation

for a planned

Solar Power Installation

In
Kankia,
Katsina, Nigeria

File Number 13/027

19/04/2013
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Summary of Tables</td>
<td>2</td>
</tr>
<tr>
<td>2 Project</td>
<td>3</td>
</tr>
<tr>
<td>3 Client</td>
<td>3</td>
</tr>
<tr>
<td>4 Contractor</td>
<td>3</td>
</tr>
<tr>
<td>5 Author</td>
<td>3</td>
</tr>
<tr>
<td>6 General</td>
<td>3</td>
</tr>
<tr>
<td>7 Study Area</td>
<td>4</td>
</tr>
<tr>
<td>8 Methods</td>
<td>5</td>
</tr>
<tr>
<td>9 Results</td>
<td>6</td>
</tr>
<tr>
<td>9.1 Morphology</td>
<td>6</td>
</tr>
<tr>
<td>9.2 Geology</td>
<td>6</td>
</tr>
<tr>
<td>9.3 Hydrology</td>
<td>6</td>
</tr>
<tr>
<td>9.4 Storage conditions</td>
<td>6</td>
</tr>
<tr>
<td>9.5 Soils</td>
<td>7</td>
</tr>
<tr>
<td>10 Foundations</td>
<td>8</td>
</tr>
<tr>
<td>11 Conclusion, Recommendations</td>
<td>8</td>
</tr>
<tr>
<td>11.1 Foundation</td>
<td>8</td>
</tr>
<tr>
<td>11.2 Protection against soil erosion</td>
<td>9</td>
</tr>
</tbody>
</table>

Figures

- No

<table>
<thead>
<tr>
<th>Maps</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial Overview</td>
<td>1/1</td>
</tr>
<tr>
<td>Aerial structures</td>
<td>1/2</td>
</tr>
<tr>
<td>Structures</td>
<td>1/3</td>
</tr>
<tr>
<td>Old Aerial View</td>
<td>1/4</td>
</tr>
<tr>
<td>Survey</td>
<td>2</td>
</tr>
<tr>
<td>Survey points</td>
<td>2/1</td>
</tr>
<tr>
<td>Contour plan</td>
<td>2/2</td>
</tr>
<tr>
<td>Outcrops</td>
<td>3</td>
</tr>
<tr>
<td>Profiles of test pits</td>
<td>3/1</td>
</tr>
<tr>
<td>Dynamic Probe Investigation</td>
<td>3/2</td>
</tr>
<tr>
<td>Photo Documentation</td>
<td>4</td>
</tr>
<tr>
<td>Results of the Chemical Analysis</td>
<td>5</td>
</tr>
</tbody>
</table>

Citations

- No

Planning
Solar Pan Africa Ltd., Stand March 2013 .. [C 1]
Mineral potential of Katsina State
Katsina State Geological Service, March 2013 .. [C 2]
Static system, Rated
PUK Solar GmbH & Co KG in May 2012 .. [C 3]
1. Tables

Listed in the below tables are the general information and study results regarding the planned land development.

<table>
<thead>
<tr>
<th>General Information</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>West IBB Way A9 north Kankia, Katsina State, Nigeria</td>
</tr>
<tr>
<td>Total Surface Area</td>
<td>Approx. 500,000 m²</td>
</tr>
<tr>
<td>Average Elevation</td>
<td>+542 m msl</td>
</tr>
<tr>
<td>Current Use</td>
<td>Wicker, Clay Mining Facility</td>
</tr>
</tbody>
</table>

Condition

<table>
<thead>
<tr>
<th>Surface cover (0 - 0.4 m)</th>
<th>Medium-plastic, firm, well-suited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densely compacted, intermittent with cobbles max. 5 cm; well-suited</td>
<td></td>
</tr>
<tr>
<td>distinct firm plastic; well-suited</td>
<td></td>
</tr>
</tbody>
</table>

Foundation

<table>
<thead>
<tr>
<th>Compacted Footers</th>
<th>Double-T profile with 100 mm side length or its equivalent with a surface area of 0.6 m² per meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footer depth</td>
<td>1.7 m</td>
</tr>
</tbody>
</table>

2. Project

Sub-surface investigation

for a planned solar-power installation

Kankia, Katsina Province, Nigeria
3. Client

Pan Africa Solar Ltd
Suite 267, Lietzenburgerstr. 53
Berlin 10719

4. Contractor

GEOTEAM
Gesellschaft für Hydrogeologie und Altlastenerkundung mbH
Lahnstraße 13
12055 Berlin

5. Editor

Michael Krockauer
Geologist, Industrial Engineer

6. General

In the study area, the installation of a 20 MW ground-mounted photovoltaic system is planned. The solar panels used on ramming foundations are to be placed at a distance of approx 2.7m apart.

In relation to the proposed construction project, the suitability of the substrate was investigated to determine the necessary depth and dimensions of the pile sections. Furthermore, the local topography was roughly mapped in order to define areas that are not suitable for the above-described modules. Pan Africa Solar Ltd. commissioned GEOTEAM GmbH to carry out the investigation and evaluation of the sub-surface conditions in the area of the planned development.

7. Study Area
The study area is located immediately north of the city Kankia, Katsina Province, west of the IBB Way A 9. The original boundary points were determined by the Katsina Province, calibrated in terms of position and marked by boundary stones. The Easting and Northing values of these points are as follows:
BP 1931 (northeast corner): E 7 ° 49.023 'N 12 ° 34.466'
BP 1932 (southeast corner): E 7 ° 49.399 'N 12 ° 34.053'
BP 1933 (southwest corner: E 7 ° 49.142 'N 12 ° 33.953'
BP 1934 (northwest corner: E 7 ° 48.770 'N 12 ° 34.355'

The extension in the northwest-southeast direction (parallel to the A 9) is 1,000 m in a NE-SW direction 500 m. The total area is about 500,000 sq. m accordingly. A dirt road crosses the area from north to south direction. The area lies fallow or is currently used for grazing. The vegetation is characterized according to the climatic conditions of dry grasses and low brush. Trees are not present in the study area. The terrain is wavy with a maximum variation in elevation of 10 meters (Appendix 2/1), between approximately +546 m and +535 m msl. The upper-surface lies, mainly, on a lateritic conglomerate matrix (see Appendix 1/3 as well as photo documentation). The conglomerate is partly covered by a firm, medium-plastic clay layer.

The Precambrian granitic host-rock is found immediately south of the study area, as a single domed outcrop.

In some areas, especially in the side area next to the A9 and the dirt roads, are deeper pits where clay was mined. These are at least in the rainy season partially filled and provide no outlet for rain-water (see Appendix 1/4). Two concrete pipes have been installed at the lowest point of the dirt road, for drainage during the rainy season. A larger drainage system is found east of the defined plot. This cuts a dry bed up to 3 m depth, in which run the numerous small gullies. The general drainage is towards the south-southwest of the there locted Kankia Dam.

8. Methods

During the period between 18:03. and 20.03.2013 the study area was surveyed. Already at first sight appeared that the areas of the former and recent clay-diggings not come for a fitting with solar panels question. Therefore, the eastern foreland of the area, starting from the specified fixed points was included in the investigation. In
consultation with the representatives of the Katsina State government, part of this zone was added to the site.

In the aftermath, the specific elevation was measured for a variety of points in the area. The fixed point 1932 (defined with +546.00 m msl) is used as the primary reference for these measurements.

In addition to an evaluation of the excavated areas, the substrate was investigated in 4 relevant points by digging down to about 1.8 m depth.

The bulk density of the substrate was measured at five points using light dynamic probing. The termination criterion used here was 40 strikes per decimeter.

After completion of the field work, the particle size distribution was determined by wet sieving of two selected soil samples.

The current boundary of the plot for the solar power system shows Appendix 1, with the calculated heights listed in the chart in Appendix 2. Appendix 3 shows the outcrops while a photographic documentation is provided in Appendix 4.

9. Results

9.1 Morphology

The elevation survey shows a slightly undulating and generally westward sloping surface with an east-west trending valley in the central area. The above-mentioned mining pits cut steep edges deep in this morphology. The floor of these pits lies between 2 and 4 m below the surrounding terrain.

9.2 Geology

The near-surface ground is formed of compacted fine-grained sediments, such as clays and silts and a conglomerate with lateritic matrix. The results of a sieve analysis of the fine-grained sediments identifies hard sandy clay (ST *) and sandy clay (TL). Quartzite pebbles of 10 mm were identified as the largest single component in the conglomerate.

9.3 Hydrology

Tough periodic rainstorms can be expected. Their water would only penetrate a very small extent of the local draining soils, but primarily will flow off on the basis of their morphology. In general, the surface drainage is west of the outfall Kankia Dam. After surveying and in view of the installed drainage system (culverts under the dirt road), it can be assumed that most of the rain water drains through the central depression.

However, the degradation pits have partly no effluent, so that at least temporarily
larger impoundments and the formation of temporary water will occur in these locations. An aerial view from the month of March (2001) shows this phenomenon clearly.

9.4 Bedding Conditions

Observed sediments are tightly packed or of firm consistency, or already consolidated. The results from the dynamic probe measurements indicate a soil that is significantly denser in storage than that of the termination criterion.

While only a loose storage is observed by another dynamic probe, (DPL 2), the starting point for this exploration is below the relevant depth of the planned panels, on the bottom of a mining pit, approximately 2 m below the surrounding surface. The presence of residual water might serve to influence the results of these tests, causing the soils to appear weaker than they would be, if drained.

9.5 Soils

The near-surface soil layers, that are relevant for the ablation of the building loads can collectively be described as follows:

<table>
<thead>
<tr>
<th>Soil Properties</th>
<th>Clay</th>
<th>Lateritic Conglomerate</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-type</td>
<td>Clay, silty, minor sandy</td>
<td>Weakly cemented sand/gravels</td>
<td>Sand, silty, clayey</td>
</tr>
<tr>
<td>Composition</td>
<td>TM</td>
<td>GI</td>
<td>ST*</td>
</tr>
<tr>
<td>Soil group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>according to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 18169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>red</td>
<td>red</td>
<td>Gray, red</td>
</tr>
<tr>
<td>Depth to bottom of soil-layer</td>
<td>max 1.8 m</td>
<td>max. 1.8 m</td>
<td>max. 1.8 m</td>
</tr>
<tr>
<td>[m below ground surface]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness[m]</td>
<td>max. 1.8 m</td>
<td>max. 1.8 m</td>
<td>max. 0.5 m</td>
</tr>
<tr>
<td>Compactness</td>
<td>-</td>
<td>Tightly compacted</td>
<td>Tightly compacted</td>
</tr>
<tr>
<td>Consistency</td>
<td>firm</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Chart 1: Ground attributes in order to the layers
10. Fundations

The developed soil layers, as observed in the walls of the trial pits, appear to be capable of carrying the load of the proposed solar panels. The introduction of a foundation that is supported by footers is recommended primarily to secure the modules against prevailing wind loads. To this end for the unfavorable conditions, to put a submission to the lateritic conglomerates has to be arranged as follows:

The detection was carried out according to DIN 1054, DIN 4026 and ZTV LSW88.

Input values:
- Effective load catchment area per timber support: 9.80 m²
- Solar panel tilt angle: 15°
- Support width: 0.10 m
- Peak wind pressure: 2.31 (KN/m²)
- Wind Stress Factor Cp, pressure: 0.7
- Wind Stress Factor Cp undertow: -1.1
- Decisive load combination: 1.00 x weight + 1.50 x wind uplift
- Governing torque: 0.40 KN/m
- Authoritative horizontal force: 11.40 KN
- Authoritative vertical force of suction: 22.00 KN
- Partial safety factor design: 1.4
- Soil friction angle: 37.50°
- Moist unit weight: 20.00 KN/m³
- Cohesion: 0 KN/m²
- Characteristic pile skin friction voltage: 30.00 KN/m²

Results of the calculation:
- Necessary driving depth ZTV LSW88: 1.70 m
- Necessary restraint surface according to DIN 4026: 0.60 m²/m
For the rammed footers, we propose the use of driven units with a double-T section composed of 100 mm side length, or a comparable profile with 0.6 m² per meter.

11. Discussion

11.1 Foundation Contribution

The introduction of rammed footers will indeed destabilize the fabric of the lateritic conglomerate. In medium term this will rearrange be secure against wind attack. We recommend accelerating the solidification of the footers by adding water during the installation process. Hereby the dissolved particles are regulated and by dehydration will form a stable grain structure for the foundation.

11.2 Protection against Soil Erosion

Under prevailing climate conditions, heavy rain events are expected for this region. Such events introduce a large volume of water, which flows through existing soil structures with a high erosive energy. The deeply incised dry-bed west of the site is the result of such erosive power. To regulate such exogenous dynamics, we propose the erection of a drain ditch in the central depression, which would serve to control the volume of rainwater traveling to the western foreland (Kankia Dam). The dimensions of such a trench would be dependant on the volume of water that is predicted for a 100-year rain event and the dimensions of the superficial catchment area.

Berlin, 2013, 22.04

Michael Krockauer
Diplom Geolege
Women Focus Group Discussion for the Five Communities Close to the Project Site

Venue: Kankia District's Head Palace

Date: October 21, 2014

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Community</th>
<th>Phone No.</th>
<th>Sign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bara'atu Zakariya</td>
<td>Shaduna</td>
<td>0706240052</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Asmain Ismail</td>
<td>Kanti</td>
<td>0706426308</td>
<td>K</td>
</tr>
<tr>
<td>3</td>
<td>Umar Abdussalam</td>
<td>Gacchi</td>
<td>0706762930</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>Hamida Yandele</td>
<td>Gacchi</td>
<td>0703089661</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Halima Bello</td>
<td>Gacchi</td>
<td>NIL</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>Ramatu Ibraheem</td>
<td>Dumaranau</td>
<td>NIL</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Amina Hamili</td>
<td>Kofyar Garin</td>
<td>NIL</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>Hadiza Alh. Lawo</td>
<td>Kwarzende</td>
<td>NIL</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>Sharammu Isah</td>
<td>Gumbin Karu</td>
<td>NIL</td>
<td>Sh</td>
</tr>
<tr>
<td>10</td>
<td>Ami'ra Isah</td>
<td>Ami'ra</td>
<td>0703295628</td>
<td>OKA</td>
</tr>
<tr>
<td>11</td>
<td>Rahamatu K/ma'na</td>
<td>ABDUL RA'UDR</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Zahara K/ma'na</td>
<td>08189937197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Rabiau</td>
<td>Nasiru</td>
<td>0706625887</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Rabi</td>
<td>Adukadiri</td>
<td>Gare 9</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Daudiwa</td>
<td>Adukadiri</td>
<td>Gare 9</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Village</td>
<td>Occupation</td>
<td>Sign</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Muhsin Yakub</td>
<td>Gachir</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmad Hassan</td>
<td>Bukkum</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdulrahman</td>
<td>Gachir</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bishar Sonni</td>
<td>Gachir</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atti Lawal</td>
<td>Kugurudwe</td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muhammad Ali</td>
<td>K. Lamin</td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tijjani Suraje</td>
<td>K. Lomin</td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibrahim Abdulrahman</td>
<td>K. Lomaj</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usaini Annayia</td>
<td>K. Lomaj</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badmus Sani</td>
<td>S/Lomaj</td>
<td>Civil Servant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usaini Annayia</td>
<td>K. Lomaj</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badmus Sani</td>
<td>S/Lomaj</td>
<td>Civil Servant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamidi Usman</td>
<td>S/Lomaj</td>
<td>Farmer</td>
<td>Law</td>
<td></td>
</tr>
<tr>
<td>Babani G. Usman</td>
<td>S/Lomaj</td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sali Muhammad</td>
<td>K. Lomaj</td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliyu Ismauno</td>
<td>K. Manawa</td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amenu Salisu</td>
<td>K. Manwaru</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mustapha Usman</td>
<td>K. Manwaru</td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huseinu Sadiq</td>
<td>K. Lomaj</td>
<td>Student</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Focus group discussion with farmers and hunters in Konkoba LBA
Conducted by Emmanuel Agbemen and Barnard War
on the 21st of October 2014

<table>
<thead>
<tr>
<th>SN</th>
<th>NAME</th>
<th>VILLAGE</th>
<th>TITLE/ OCCUPATION</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UMAR Aliko</td>
<td>M'gari</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SASISU AHMAD</td>
<td>M'gari</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AAD TADA</td>
<td>M'gari</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ABUL KADIR</td>
<td>K'gari</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NURU MAHATUN</td>
<td>K'gari</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MUNJARI HASSAN</td>
<td>K'gari</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SANI AMIR</td>
<td>Galamma</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BABA USMAN</td>
<td>Galamma</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SAFADAM SILEM</td>
<td>K'marana</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>UMARU RABI'U</td>
<td>K'marana</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AAMU ONA'HU</td>
<td>K'marana</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SANI Bello</td>
<td>Gachi</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ABDU MA'AZU</td>
<td>Gachi</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ABU LALELU</td>
<td>Gachi</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>MUZAHUM UMAR</td>
<td>K'marana</td>
<td>Hunter</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RABI'U USMAN</td>
<td>M'gari</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SALL SABA</td>
<td>M'gari</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAUSA UMAR</td>
<td>M'gari</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>REGAR MAHUNOA</td>
<td>K'alama</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SAMI SANA</td>
<td>K'alama</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>USMANA GALAMMA</td>
<td>K'alama</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SABA SADA</td>
<td>K'gari</td>
<td>Farmer</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>UMARU SADA</td>
<td>K'gari</td>
<td>Farmer</td>
<td></td>
</tr>
</tbody>
</table>
PAN AFRICA SOLAR 80MW POWER STATION IN KANKIA’s ESIA HOUSEHOLD SURVEY:

Complete one form for each household

A. LOCATION

<table>
<thead>
<tr>
<th>A1. Community name</th>
</tr>
</thead>
</table>

B. HOUSEHOLD IDENTITY

<table>
<thead>
<tr>
<th>B1. Family name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>B2. Name of person interviewed:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>B3. Total number of people in household (whether related or not)</th>
</tr>
</thead>
</table>

Verification

<table>
<thead>
<tr>
<th>Name of person interviewed</th>
<th>Signature or mark</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name of interviewer</th>
<th>Signature</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date (dd/mm/yyyy)</th>
</tr>
</thead>
</table>

C. DEMOGRAPHICS

C1. Sex

<table>
<thead>
<tr>
<th>1) Male</th>
<th>2) Female</th>
</tr>
</thead>
</table>

C2. Age (years)

<table>
<thead>
<tr>
<th>1) Below 18</th>
<th>2) 18-30</th>
<th>3) 31-45</th>
<th>4) 46-65</th>
<th>5) 66+</th>
</tr>
</thead>
</table>

C3. Marital Status

<table>
<thead>
<tr>
<th>1) Single</th>
<th>2) Married</th>
<th>3) Divorced/Separated</th>
<th>4) Widowed</th>
</tr>
</thead>
</table>

C4. Family setting

<table>
<thead>
<tr>
<th>1) Monogamous</th>
<th>2) polygamous</th>
</tr>
</thead>
</table>

C5. Ethnic group

<table>
<thead>
<tr>
<th>1) Yoruba</th>
<th>2) Hausa</th>
<th>3) Igbo</th>
<th>4) Others (specify)</th>
</tr>
</thead>
</table>

C6. Religion

<table>
<thead>
<tr>
<th>1) Muslim</th>
<th>2) Christian</th>
<th>3) Traditional</th>
<th>4) Others (specify)</th>
</tr>
</thead>
</table>
C7. Highest Level of Education
1) None 2) Primary School 3) Junior High School 4) Senior High School 5) Technical or Vocational School 6) Tertiary

C8. Respondent’s primary occupation/main source of income

C9. Secondary occupation (if any)

C10. Residential status
1) Year-round resident 2) Resident, absent less than 3 months 3) Resident, absent 3 – 6 months 4) Non-resident, visiting 5) others (specify)

C11. Length of residence in this community (years)
a) 0-2 b) 3-5 c) 5-10 d) 10-15 e) 15+

D. ACTIVITIES AND INCOME

What is/are your source of income?

In what quantity?

Describe its ownership (both the space using and the content).

Mode of operation of the source of income

D8. What is the average income you realise in a year? (₦)

D9. Please estimate your monthly household income in naira (₦)
a) Less than 5,000 b) 5,001 - 20,000 c) 20,001 – 50,000 d) 50,001 – 100,000 e) Above 100,000

E. STANDARD OF LIVING
E1. Assets

E1.1 What sort of housing does your household live in?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Construction material - Walls</td>
<td>1</td>
<td>Plank wall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Mud (indicate if plastered)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Cement blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Others (specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Construction material - roofing</td>
<td>1</td>
<td>Asbestos slates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Corrugated aluminium zinc sheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Nigerite modern roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Decking/Pent house</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Thatched roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Others (specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Construction material - floor</td>
<td>1</td>
<td>Earthen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Cement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Tiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Others (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E1.2 Toilet Facility

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pit latrine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Water borne system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Toilet facility outside dwelling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Others (specify)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E1.3 Tenure of housing

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Owner occupier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rent/Lease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Occupied rent free</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E2. Household Services

E2.1. What type of lighting does your household use? (Circle all that apply)

1) Torch & batteries
2) Kerosene lamp
3) Candles
4) TCN
5) Generator
6) Solar
7) Others (specify)

E2.2. What type of cooking fuel does your household use? (Circle all that apply)

1) Firewood
2) Charcoal
3) Kerosene Stove
4) LPG Stove
5) Electricity – Hot Pate
6) Others (specify)

E2.3. Do you get water from any of the following? (circle all that apply)

<table>
<thead>
<tr>
<th></th>
<th>Do you use this water for drinking</th>
<th>Do you use this water for cooking</th>
<th>Do you use this water for bathing and washing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Private Well</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2) Private Borehole</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3) Public water supply</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>4) Stream/River</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>5) Water vendor</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>6) Rain Harvesting</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>7) Others (specify)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

E2.4. How do you regularly dispose of your domestic waste?

1) Government Owned Operators (PSP)
2) Private Cart Pushers
3) Burning outside/backyard
4) Burying
5) Throwing in the drains/gutters
6) Others (specify) ..

E2.5. Do you have access to these social services in your area?

<table>
<thead>
<tr>
<th>Service</th>
<th>Available (1)</th>
<th>Not Available (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Education - primary</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>b. Education - secondary</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>c. Education - tertiary</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>d. Electricity</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>e. Telecommunications</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>f. Transport</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>g. Water</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>h. Sanitation (toilets)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>i. Solid waste disposal</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>j. Law and order/security</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>k. Medical services/health care</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>l. Recreation</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

E2.6. In your opinion, how has the standard of living of your household changed over the previous three years?

<table>
<thead>
<tr>
<th>Change Level</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Better</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Worse</td>
<td>Yes</td>
</tr>
</tbody>
</table>

E2.7. Why (Ask for explanation and write summary below)

E3. Household Expenditure

E3.1. What do you estimate that your household spends on the following per month:

<table>
<thead>
<tr>
<th>Expenditures</th>
<th>Amount (Naira)</th>
<th>Rank (1-8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Petrol/kerosene/fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. School fees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Fees for transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Clothing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Home maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Healthcare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Others (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F. HEALTH

F1. GENERAL HEALTH

F1.1. Has anyone in your household suffered from any of the following diseases in the last two weeks? (circle all that apply)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Available (1)</th>
<th>Not Available (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Blood in urine disease</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>b. Malaria/fever</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>c. Skin rash/itches</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>d. Stomach pain/watery stool/diarrhoea</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>e. Guinea worm</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>f. Tuberculosis</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>g. Typhoid</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>h. Food poisoning</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>i. Others (please specify)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
F1.2 How would you rate your household’s general health status?

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F1.3 In the last month how often has a member of your household visited a healthcare facility?

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>1 or 2 times</th>
<th>3 to 5 times</th>
<th>4 or more times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F1.4 Which medical facility do you usually use when ill?

<table>
<thead>
<tr>
<th></th>
<th>Private hospital</th>
<th>General hospital</th>
<th>Traditional herbalist / medicine</th>
<th>Pharmacy/Chemist</th>
<th>NGO</th>
<th>None</th>
<th>Others (specify)</th>
<th>Primary Health Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F2 BELIEFS/CULTURAL TABOOS AFFECTING HEALTH

F2.1 Are there any beliefs or cultural taboos affecting health in this community?
- A) Yes
- B) No

F2.2 If yes, what are these?

F5. MATERNAL HEALTH

<table>
<thead>
<tr>
<th>F5.1 Has anyone in your household delivered a baby in the last 2 years?</th>
<th>1 Yes</th>
<th>2 No</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5.2 Where did they receive ante-natal care?</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 Traditional Birthing Attendant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Others (specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5.3 Did any member of the household (or you) have any problems during pregnancy?</td>
<td>1 Yes</td>
<td>2 No</td>
</tr>
<tr>
<td>F5.4 Did any member of the household (or you) have any problems after birth?</td>
<td>1 Yes</td>
<td>2 No</td>
</tr>
</tbody>
</table>

F5.5. How many deaths have occurred in your household in the last two years? ..

G. OPINIONS

G1.1 Have you received or heard information about the project?
- 1 Yes
- 2 No

G1.2 If yes, how?

G2.1 Do you have enough information about the project?
- 1 Yes
- 2 No

G3.1 Do you think the project will benefit you?
- 1 Yes
- 2 No

G3.2 How will the project benefit you?

G4.1 Do you have concerns about the project?
- 1 Yes
- 2 No

G4.2 What concerns?
APPENDIX 12

STAKEHOLDERS ENGAGEMENT DOCUMENTS
ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) OF PAN AFRICA SOLAR 75MW POWER STATION IN KANKIA, KATSINA STATE, NIGERIA

A1.1 Introduction
Pan Africa Solar Limited (PASL), in partnership with JCM Solar Capital Limited (JCM), plans to install and operate a 75MW Solar Power Station in Kankia, Katsina State, North West region of Nigeria. JCM Capital is a Canadian-based private equity firm that focuses on the development of utility-scale clean power projects. JCM has invested in and developed over 120 projects in Canada, South America and Africa. JCM works with a diverse set of stakeholders in the solar PV industry that make the company an ideal partner for delivering utility-scale solar PV. JCM credits its success to identifying key renewable energy markets and building long-term strategic partnerships.

PASL commissioned Environmental Accord Nigeria Limited (EnvAccord), an accredited environmental and sustainability consulting firm, to upgrade the existing Environmental Impact and Social Assessment (ESIA) report for the proposed Solar Power Project.

The aim of this document is to provide background information about the Project and the ESIA process and to invite comments on any issues you may have (as one of the identified Stakeholders).

A1.2 Project Location
The proposed solar power project is planned to be located along IBB way close to Kankia-Ingawa road, Kankia Local Government Area of Katsina State. The project site covers a total land of approximately 130 hectares. The aerial imagery of the project site and the neighboring property is shown in Figure 1.1.
1.2 The Solar Power Plant Project

The Solar Power Project is a renewable energy technology that involves the use of Solar cells, which convert sunlight directly into electricity. The solar cells are made of semiconducting materials similar to those used in computer chips. When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity. This process of converting light (photons) to electricity (voltage) is called the photovoltaic (PV) effect.

Solar cells are typically combined into modules that hold about 40 cells; a number of these modules are mounted in PV arrays that can measure up to several meters on a side. These flat-plate PV arrays can be mounted at a fixed angle facing south, or they can be mounted on a tracking device that follows the sun, allowing them to capture the most sunlight over the course of a day. Several connected PV arrays can provide enough power for a household; for large electric utility or industrial applications, hundreds of arrays can be interconnected to form a single, large PV system.

Solar PV is used primarily for grid-connected electricity to operate residential appliances, commercial equipment, lighting and air conditioning for all types of buildings. Through stand-alone systems and the use of batteries, it is also well suited for remote regions where there is no electricity source. Solar PV panels can
be ground mounted, installed on building rooftops or designed into building materials at the point of manufacturing.

Figure 1.2 shows typical simplified schematics of a grid-connected residential PV system.

![Simplified Schematics of a Grid-Connected Residential PV System](image)

Fig. 1.2: Typical simplified schematics of a grid-connected residential PV system

Figure 1.3:

- **A:** A typical example of a Photovoltaic Array (Solar Power) and
- **B:** A typical Solar Farm

A1.3 Project Activities
The project activities can be divided into construction and operation phase activities.
The Construction Phase activities will include (but not limited to the following):
- Mobilization of construction contractor(s) to the Project site;
- Site Clearing;
- Civil, mechanical and electrical works;
- Construction and assembly of the PV systems, Inverters and transformers and other ancillary facilities;
- Installation of equipment and water storage facilities
- Contractor demobilization from site.

Operational Phase activities will include:
- Day to day operation of the Power Plant and the management of the business;
- Facilities maintenance and Occasional repairs;
- General housekeeping and waste generation and management.

A1.4 Project Schedule
The construction phase of the proposed Project is envisaged to commence in the first to second quarter (1st to 2nd) quarter of 2015 following the receipt of all necessary approvals and permits from the government.

Environmental and Social Impact Assessment
Under the Nigerian Environmental Impact Assessment Act (Act No. 86 of 1992), Pan Africa Solar Limited (PASL) in collaboration with JCM Capital Solar Limited is required to submit an ESIA in order to install and operate the Power Plant. Currently the Scoping Phase of the ESIA is being undertaken.

Pan Africa Solar Limited (PASL) has commissioned Environmental Accord Nigeria Limited (a Nigerian consultancy firm) to undertake the ESIA report upgrade for the Project.

The ESIA report will describe the Project, the affected areas, assess the likely positive and negative impacts of the Project and describe the mitigation and management actions to address the impacts. The ESIA Report, along with comments received from stakeholders will be submitted to the Federal Ministry of Environment (and Nigerian Electricity Regulatory Commission-NERC/National Bulk Electricity Trading Plc-NBET) who will decide whether or not to authorize the proposed Project.
A2.1 The ESIA Processes

The ESIA process (Figure 1.3) aims to identify all the potential impacts of the proposed Project, assess the significance of the impacts, and to present measures to mitigate these impacts. At this stage of the Project, only the Scoping Phase is being carried out. The Scoping Phase will include:

- Identification of potential social and environmental impacts;
- Stakeholder Engagement workshop;
- Field visits and desktop reviews;
- Submission of the Scoping Report and Terms of Reference to the FMEnv of Nigeria.

![Fig. 1.3: FMEnv EIA Process](image)

Please note the FMEnv has already issued an EIA Certificate for the project and some of the steps in Fig 1.3 will not be repeated in this upgrade project.

A3.1 Preliminary Impacts and Mitigation Measures

Preliminary potential impacts identified include the following:

Soils and Geology

- Alteration in soil quality, soil compaction, potential alteration of drainage channels, increased runoff and erosion may occur due to clearing of vegetation and site preparation.
- Alteration of hydrogeology due to earth moving equipment for site clearing and preparation may occur.

Surface water and Groundwater

- Use of or spills of chemicals at solar facilities (e.g. dielectric fluids, dust suppressant) could result in contamination of surface or groundwater.
Emissions into soil and groundwater may be caused by inadequate/improper storage of materials or by abnormal plant operations, damaged modules or fire.

Plants and Animals

- Removal of vegetation and disturbance of any animals due to clearing of the land thereby leading to loss of habitat may occur (impact is localized i.e. restricted to the project site).

Air Quality

- Reduced air quality of the environment may occur as a result of dust and emissions from engines during construction.

- Particulate matter may be generated into the atmosphere during the operation of the solar facilities thereby impacting the air quality of the environment.

Noise, Vibration and Light

- Noise and vibration due to land-based equipment and activities during construction, and operations.

- Local people and animals may be disturbed by facility lighting.

- Noise and vibration caused by additional vehicles along the roads to the site may impact sensitive receptors.

Related to Waste

- Additional waste created by sand, vegetation, trees, rubbish from construction workers, equipment, vehicles.

- The disposal/discharge of waste streams generated on site as a result of the operational processes e.g. inverter batteries

People’s Way of Life and Businesses

- Positive impacts to local and national economy.

- Employment opportunities.

- Changes to cultural and social networks and bodies and sense of community.

Transport and Access

- Increased road traffic during construction and operation of the project could affect other road users.
A4.1 Mitigation Measures

In the light of the preliminary potentials impacts identified, appropriate mitigation measures will be incorporated in the Projects Design and additional mitigation measures will be put in place throughout the Projects life cycle to minimize its environmental footprint.

“We would like to meet with you to discuss any opinions and concerns you may have about any of these potential impacts”.

PAN AFRICA SOLAR POWER PLANT PROJECT: ENVIRONMENTAL IMPACT ASSESSMENT

We would like you to take part in this ESIA process so you can raise any issues and comments you may have about the proposed project. Your comments are a key part of the study to see whether the project should proceed and it is important that Pan Africa Solar Ltd. understands your comments so that they can be answered and dealt with in the ESIA report.

To receive regular information throughout the ESIA process, you must register as an Interested and Affected Party. To register please send this form to Pan Africa Solar Ltd. (through its consultant, EnvAccord) at the address given below. If you want to make any comments at this stage please use this form. Alternatively, please do not hesitate to send an email or write separately.

You can make additional comments for the study team to record on a separate page or on the reverse side of this form. Please post or fax this comment sheet to any of the addresses below as soon as possible and preferably on or before October 15, 2014 so that we can take your comments into consideration in the ESIA. The comments could also be e-mailed to the address below.

<table>
<thead>
<tr>
<th>Please fill in your details</th>
<th>Organization:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone:</td>
<td>Position:</td>
</tr>
<tr>
<td>Cell phone:</td>
<td>Email:</td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
</tbody>
</table>

Please post or fax this form to this address:

Environmental Accord Nigeria Limited
Attention: Funmi Olusegun
Tel: +234 8034967405, +234-1-212-0676
Email: folusegun@envaccord.com
Address: Environmental Accord Nigeria Limited
13, Alabi Street, off Oguntona Crescent, Gbagada (Phase 1),
Lagos, Nigeria
Comments Form

It would be useful if you could answer the questions below but please feel free to provide any comments you would like to raise. Please continue on additional paper if required.

1. What are the primary comments that you have about this Project?

__
__
__
__
__
__

2. Do you have or know of any information that we should know for the ESIA (e.g. environmental information or community, social or economic information related to the proposed site or the Project activities)?

Many thanks for your participation
October 10, 2014

The Honourable Minister,
Federal Ministry of Environment,
Mabushi,
Abuja,
Nigeria

Attention: The Director, Environmental Assessment Department

Dear Sir,

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) OF PROPOSED PAN AFRICA SOLAR POWER PLANT PROJECT IN KANKIA, KATSINA STATE: NOTICE OF PROJECT MODIFICATIONS

Pan Africa Solar Limited (PASL) recently completed the ESIA study for the establishment of a 20MW Photovoltaic Solar farm to be located at Kankia, in Kankia Local Government Area of the state. The total land allocated for the project area acquired is about Seventy Two point two (72.2) hectares. The Federal Ministry of Environment (FMEv) has already issued the Environmental Impact Statement (EIS) and EIA Certificate for the project.

The proposed Pan Africa Photovoltaic Power Plant Project in Katsina State is a green-field project in partnership with the Katsina State Government.

PASL now wishes to inform the FMEv of the following modifications to the project:

1. Power Plant Capacity: 75 MW; and
2. Allocated Land Area: 130 hectares.

Accordingly, PASL has engaged Environmental Accord Nigeria Limited (EnvAccord) to undertake an upgrade of the ESIA report already approved by the FMEv. The upgraded ESIA report will comply with the requirements of the International Finance Corporation (IFC)'s Performance Standards.

An important aspect of the ESIA upgrade project is stakeholders' consultation. The FMEv is a key and relevant stakeholder in the ESIA process. To kick start the stakeholder consultation process, an ESIA Scoping Workshop has been planned. The FMEv is hereby invited to the Scoping Workshop as follows (Please, kindly note the change in venue and date).

Venue: Al-Bhusan Hotels Limited,
15, Tahaya Madaki Road, Katsina

Date: Thursday, October 16, 2014

Time: 11.00 a.m.

In addition, please find attached a Background Information Document (BID) containing background information about the Project and the ESIA process.

Please kindly contact the Project Manager on folusegun@envaccord.com or +234-803-496-7405 should you require any further information.

Thank you.

Yours sincerely,

For: ENVIRONMENTAL ACCORD NIGERIA LIMITED

Ibrahim Salau
Managing Director

ENVIRONMENTAL ACCORD NIGERIA LIMITED
13, Alabi Street, Off Oguntona Crescent, Gbagada (Phase 1), Lagos
P. O. Box 73642, Victoria Island, Lagos
Phone: 01-892-3090; 0802-360-9591
http://www.envaccord.com
info@envaccord.com
October 10, 2014

The Managing Director,
Nigerian Bulk Electricity Trading Plc (NBET)
Bank of Industry Building,
Off Herbert Macaulay Way,
Central Business District,
FCT, Abuja

Dear Sir,

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) OF PROPOSED PAN AFRICA SOLAR POWER PLANT PROJECT IN KANKIA, KATSINA STATE

Environmental Accord Nigeria Limited (EnvAccord) has been commissioned by Pan Africa Solar Limited (PASL) to undertake an Environmental and Social Impact Assessment (ESIA) of the proposed 75 MW Photovoltaic power plant project in Kankia, Katsina State. This will be a very important project for Katsina State in particular and for Nigeria as a whole.

An important aspect of the ESIA process is stakeholders’ consultation. Your Ministry has been identified as an important and relevant Stakeholder in the ESIA process. The consultation meeting provides an opportunity for informing stakeholders of the project intention and receiving valuable feedback and participation. In this regard, as one of the identified stakeholders you are invited to a Stakeholder Engagement workshop scheduled as follows (Please, kindly note the change in venue and date).

Venue:
Al-Bhustan Hotels Limited,
15, Yahaya Madaki Road, Katsina

Date:
Thursday, October 16, 2014

Time:
11.00 a.m.

In addition, please find attached a Background Information Document (BID) containing background information about the Project and the ESIA process.

Please kindly contact the Project Manager on folusegua@envaccord.com or +234-803-496-7405 should you require any further information.

Thank you.

Yours sincerely,

For: ENVIRONMENTAL ACCORD NIGERIA LIMITED

Ibrahim Salau
Managing Director

ENVIRONMENTAL ACCORD NIGERIA LIMITED
13, Alabi Street, Off Oguntona Crescent, Gbagada (Phase 1), Lagos
P. O. Box 73642, Victoria Island, Lagos
Phone: 01-892-3090; 0802-360-9591
http://www.envaccord.com
info@envaccord.com
October 10, 2014

The Chairman,
NERC Headquarters,
Adamawa Plaza,
Plot 1099, First Avenue
Off Shehu Shagari Way, Central Business District
P.M.B. 136, Garki,
Abuja

Dear Sir,

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) OF PROPOSED PAN AFRICA SOLAR POWER PLANT PROJECT IN KANKIA, KATSINA STATE

Environmental Accord Nigeria Limited (EnvAccord) has been commissioned by Pan Africa Solar Limited (PASL) to undertake an Environmental and Social Impact Assessment (ESIA) of the proposed 75 MW Photovoltaic power plant project in Kankia, Katsina State. This will be a very important project for Katsina State in particular and for Nigeria as a whole.

An important aspect of the ESIA process is stakeholders’ consultation. Your Ministry has been identified as an important and relevant Stakeholder in the ESIA process. The consultation meeting provides an opportunity for informing stakeholders of the project intention and receiving valuable feedback and participation. In this regard, as one of the identified stakeholders you are invited to a Stakeholder Engagement workshop scheduled as follows (Please, kindly note the change in venue and date).

Venue: Al-Bhustan Hotels Limited,
15, Yahaya Madaki Road, Katsina

Date: Thursday, October 16, 2014

Time: 11.00 a.m.

In addition, please find attached a Background Information Document (BID) containing background information about the Project and the ESIA process.

Please kindly contact the Project Manager on folusegun@envaccord.com or +234-803-496-7405 should you require any further information.

Thank you.

Yours sincerely,

For: ENVIRONMENTAL ACCORD NIGERIA LIMITED

Ibrahim Salau
Managing Director

ENVIRONMENTAL ACCORD NIGERIA LIMITED
13, Alabi Street, Off Oguntona Crescent, Gbagada (Phase 1), Lagos
P. O. Box 73642, Victoria Island, Lagos
Phone: 01-892-3090; 0802-360-4591
http://www.envaccord.com
info@envaccord.com
October 10, 2014

The Managing Director,
International Centre for Energy, Environment & Development (ICEED)
Bassani Plaza,
3rd Floor, Block F,
Plot 759 Central Business District
P.O. Box 5421
Garki, Abuja

Dear Sir,

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) OF PROPOSED PAN AFRICA SOLAR POWER PLANT PROJECT IN KANKIA, KATSINA STATE

Environmental Accord Nigeria Limited (EnvAccord) has been commissioned by Pan Africa Solar Limited (PASL) to undertake an Environmental and Social Impact Assessment (ESIA) of the proposed 75 MW Photovoltaic power plant project in Kankia, Katsina State. This will be a very important project for Katsina State in particular and for Nigeria as a whole.

An important aspect of the ESIA process is stakeholders’ consultation. Your Ministry has been identified as an important and relevant Stakeholder in the ESIA process. The consultation meeting provides an opportunity for informing stakeholders of the project intention and receiving valuable feedback and participation. In this regard, as one of the identified stakeholders you are invited to a Stakeholder Engagement workshop scheduled as follows (Please, kindly note the change in venue and date).

Venue: AI-Bhutan Hotels Limited,
15, Yahaya Madaki Road, Katsina

Date: Thursday, October 16, 2014

Time: 11.00 a.m.

In addition, please find attached a Background Information Document (BID) containing background information about the Project and the ESIA process.

Please kindly contact the Project Manager on foluso@envaccord.com or +234-803-496-7405 should you require any further information.

Thank you.

Yours sincerely,

For ENVIRONMENTAL ACCORD NIGERIA LIMITED

Ibrahim Salau
Managing Director

ENVIRONMENTAL ACCORD NIGERIA LIMITED
13, Alabi Street, Off Oguntola Crescent, Gbagada (Phase 1), Lagos
P. O. Box 73642, Victoria Island, Lagos
Phone: 01-892-3091, 080-360-9591
http://www.envaccord.com
info@envaccord.com

Original Copy Collected by me: Ajibade Wale
08235085232
ATTENDANCE SHEET

PROJECT NAME: ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) OF PAN AFRICAN SOLAR POWER PROJECT IN KANKIA, KATSINA STATE

DATE: THURSDAY, OCTOBER 16, 2014
VENUE: AL-BHUSTAN HOTEL, KATSINA STATE
TITLE: STAKEHOLDERS' SCOPING WORKSHOP

<table>
<thead>
<tr>
<th>S/N</th>
<th>NAMES</th>
<th>COMPANY'S NAME</th>
<th>MOBILE NUMBER</th>
<th>E-MAIL ADDRESS</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Musa Nastini</td>
<td>KATSINA STATE</td>
<td>08033116760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Isa Bolo</td>
<td></td>
<td>07052137676</td>
<td>ibraade@gmail.com</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fomeka</td>
<td>FME, KATSINA</td>
<td>08059210811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>James Fabor</td>
<td>FMEN, ABU</td>
<td>08057097145</td>
<td>jikong@yahoo.com</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Abubakar</td>
<td>UPDA (KUDU)</td>
<td>07037652255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Musa Bariya</td>
<td>KATSINA STATE</td>
<td>08036254041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Phone Number</td>
<td>Email Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Abubakar J.</td>
<td>08065729246</td>
<td>hassan.abubakar@email.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Umaru Abubakar</td>
<td>08068798643</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Aliyu Abubakar</td>
<td>08067776647</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Aliyu Fatima</td>
<td>08144234411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ahmad Amin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Samaila Musa</td>
<td>08107974383</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Hadzali Dahu</td>
<td>08047618584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Samaila Adamu</td>
<td>07039297578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sabi Musa</td>
<td>08038989958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Isah Murari</td>
<td>08038219585</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Musa Tidemau</td>
<td>07064542511</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Yahaya Ismail</td>
<td>08069226886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Umaru Adamu</td>
<td>07065782774</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Musa Y. Jacob</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Musa Ibraheem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Sami Dangane</td>
<td>07067110888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Danladi Salle</td>
<td>07062314008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Hamza S. K.</td>
<td>08036254388</td>
<td>hamza@sk.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional note: The table data includes names, phone numbers, and email addresses of individuals.
ATTENDANCE SHEET

PROJECT NAME: ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) OF PAN AFRICAN SOLAR POWER PROJECT IN KANKIA, KATSINA STATE

DATE: THURSDAY, OCTOBER 16, 2014
VENUE: AL-JBHUSTAN HOTEL, KATSINA STATE
TITLE: STAKEHOLDERS' SCOPING WORKSHOP

<table>
<thead>
<tr>
<th>S/N</th>
<th>NAMES</th>
<th>COMPANY'S NAME</th>
<th>MOBILE NUMBER</th>
<th>E-MAIL ADDRESS</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.1. 1.</td>
<td></td>
<td>08032860780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>2.1. 1.</td>
<td></td>
<td>0806617727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3.1. 1.</td>
<td></td>
<td>0803704115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>4.1. 1.</td>
<td></td>
<td>08032860780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>5.1. 1.</td>
<td></td>
<td>08032860780</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 13

STAKEHOLDERS ENGAGEMENT PLAN
PAN AFRICA SOLAR LIMITED (PASL)

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) OF PROPOSED 80 MW SOLAR POWER PROJECT AND ASSOCIATED TRANSMISSION IN KANKIA, KATSINA STATE, NIGERIA

STAKEHOLDERS ENGAGEMENT PLAN (DRAFT)

SEPTEMBER 2015
ENVIRONMENTAL IMPACT ASSESSMENT (EIA) OF PROPOSED 80 MW SOLAR POWER PROJECT AND ASSOCIATED TRANSMISSION IN KANKIA, KATSINA STATE, NIGERIA

STAKEHOLDERS ENGAGEMENT PLAN (SEP)
(DRAFT)

PREPARED BY (ON BEHALF OF PASL)

ENVIRONMENTAL ACCORD NIGERIA LIMITED
13, Alabi Street, Off Oguntona Crescent, Gbagada (Phase 1), Lagos
01-212-0676; 0802-360-9591
info@envaccord.com
http://www.envaccord.com
TABLE OF CONTENTS

Title Pages .. 1
Table of Contents 3
List of Tables 4
List of Figures 5
List of Plates 6
List of Acronyms and Abbreviations 7

SECTION ONE: INTRODUCTION
1.1 Background Information 8
1.2 Overview of the Project 9
1.6 Purpose of the Stakeholders Engagement Plan 11
1.4 Objectives of the Stakeholder Engagement Plan 11

SECTION TWO: LEGAL AND ADMINISTRATIVE FRAMEWORK GUIDING
STAKEHOLDER ENGAGEMENT
2.1 General Overview 13
2.2 Nigerian Legislative Requirements 13
2.3 International Requirements 14

SECTION THREE: STAKEHOLDER IDENTIFICATION, ENGAGEMENT PROCESS,
PREVIOUS CONSULTATION AND DISCLOSURE ACTIVITIES
3.1 Introduction 17
3.1 Stakeholder Identification and Analysis 17
3.2 Stakeholder Engagement Process 21
3.3 Previous Stakeholder Engagement, Consultation and Disclosure Activities 28

SECTION FOUR: POST-COMMISSIONING STAKEHOLDER ENGAGEMENT
ACTIVITIES
4.1 Stakeholder Engagement Plan 35
4.2 Management Commitment 35
4.3 Communication and Feedback 35
4.4 Grievance mechanism 36

SECTION FIVE: MONITORING AND REPORTING
5.1 Monitoring Stakeholder Engagement Activities 40
5.2 Reporting 40
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>IFC requirements on Stakeholder engagement</td>
<td>14</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Identified Stakeholders associated with the proposed Project</td>
<td>19</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Stakeholder Engagement Process</td>
<td>21</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Stakeholder Engagement Tool and Communication</td>
<td>22</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Stakeholder Engagement Process</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Summary of Previously conducted Stakeholder Engagement Activities</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>PASL Stakeholder Engagement Implementation Plan</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1: Administrative Map of Katsina State highlighting Kankia LGA 9
Figure 1.2: Identified communities within 5 km radius of the Project site 10
LIST OF PLATES

Plate 3.1: EnvAccord Field team, Kankia District Head and Village Heads 29
Plate 3.2: Focus Group Discussion session with representatives of adult women group from the affected communities in the study area 30
Plate 3.3: Focus Group Discussion session with representatives of hunters and farmers group from the affected communities in the study area 30
Plate 3.4: Focus Group Discussion session with representatives of youth group from the affected communities in the study area 31
Plate 3.5: Respondent during Socio-economic survey 32
Plate 3.6: Cross-section community residents during Household Socio-economic survey 33
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>BID</td>
<td>Background Information Document</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td>CLO</td>
<td>Community Liaison Officer</td>
</tr>
<tr>
<td>CSR</td>
<td>Corporate Social Responsibility</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>FGD</td>
<td>Focused Group Discussion</td>
</tr>
<tr>
<td>FMEnv</td>
<td>Federal Ministry of Environment</td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage</td>
</tr>
<tr>
<td>ICEED</td>
<td>International Centre for Energy, Environment and Development</td>
</tr>
<tr>
<td>IFC</td>
<td>International Finance Corporation</td>
</tr>
<tr>
<td>LGA</td>
<td>Local Government Area</td>
</tr>
<tr>
<td>MV</td>
<td>Medium Voltage</td>
</tr>
<tr>
<td>MW</td>
<td>Mega Watt</td>
</tr>
<tr>
<td>NBET</td>
<td>Nigerian Bulk Electricity Trading</td>
</tr>
<tr>
<td>NERC</td>
<td>Nigerian Electricity Regulatory Commission</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organisation</td>
</tr>
<tr>
<td>PAP</td>
<td>Potentially Affected Parties</td>
</tr>
<tr>
<td>PASL</td>
<td>Pan Africa Solar Limited</td>
</tr>
<tr>
<td>PSs</td>
<td>Performance Standards</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>Q1</td>
<td>Quarter 1</td>
</tr>
<tr>
<td>Q3</td>
<td>Quarter 3</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SEP</td>
<td>Stakeholder Engagement Plan</td>
</tr>
<tr>
<td>TCN</td>
<td>Transmission Company of Nigeria</td>
</tr>
</tbody>
</table>
SECTION ONE

INTRODUCTION

1.1 Background Information

Pan Africa Solar Limited (PASL) proposes to construct, install and operate a Photovoltaic (PV) Power Plant in Kankia Local Government Area (LGA) of Katsina State, Nigeria (the Project).

The Project will be built in two (2) phases with a proposed total capacity of 80 Mega Watt nominal power (MWp). Phase 1 of the Project will have a capacity of approximately 34 MWp and is planned to commence in Quarter 1 (Q1) of 2016 with full operation in Q3 of 2016. Phase 2 is anticipated to be operational a year later (2017).

This document presents the Stakeholder Engagement Plan (SEP) for the proposed Project. It describes a framework to ensure that stakeholders are continuously engaged throughout the life cycle of the proposed Project.

The document has been prepared taking into cognizance the requirements of the applicable Nigerian regulations on stakeholder engagement and public participation as well as the requirements of the International Finance Corporation (IFC) Performance Standards on Environmental and Social Sustainability, 2012.

The SEP has been developed to achieve the following, amongst others:

- Present the initial consultation activities that have been undertaken with stakeholders with regards to the proposed Project.
- Describe the approach to be adopted for further engagement, detailing how this will be integrated into the rest of the Project lifecycle.
- Identify any other relevant stakeholders and mechanisms through which they will be engaged.
- Document the stakeholder engagement process;
- Build on the understanding of previous stakeholder engagement activities undertaken for the Project;
- Identify PASL responsibilities to its stakeholders with respect to Nigerian legislative requirements and international best practice.

This plan will be a living document which will be reviewed periodically to ensure that all issues related to stakeholder engagement are identified and appropriately addressed. On-going consultation will be undertaken with
Potentially Affected Parties (PAP) specifically targeting local women and those that use the project site unofficially for grazing.

1.2 Overview of the Project

An overview of the proposed Project is provided in this sub-section. Further details are contained in Chapter 3 of the report of Environmental Impact Assessment (also known as Environmental and Social Impact Assessment) conducted for the Project.

The proposed Project will be a ground mounted solar PV module using crystalline silicon, or thin film PV technology on a fixed tilt mounting structure.

Electricity generated from the Project will be evacuated via high voltage power (transmission) lines to the nearby existing Kankia substation (situated approximately 3.66 km from the Project site) for transmission and distribution via the national network.

The Project is planned to be sited on a 120 ha of land in Kankia, Kankia LGA of Katsina State, Northwestern region of Nigeria (Figure 1.1). The Project site was owned by the Katsina State Government until rights were granted to PASL in return for equity stake in the Project ownership. The site was acquired in two tranches of 50 ha and 70 ha. The Project lies between Latitude 12° 33’ 40” N and 12° 34’ 30” N and Longitude 7° 48’ 30” E and 7° 49’ 20” E.

![Figure 1.1: Administrative Map of Katsina State highlighting Kankia LGA](image-url)
The key components associated with the proposed Project are as follows:

- PV modules
- Mounting structures (and tracking motors where applicable)
- Cabling
- DC-AC current inverters
- Transformers
- Medium Voltage (MV) & High Voltage (HV) Switchgear
- Electrical connection cabin
- Supervisory Control and Data Acquisition (SCADA) System
- Transmission to grid
- Associated infrastructure and utilities, including:
 - Site security, including fencing and CCTV
 - Buildings, including onsite substation, connection building, control building, guard cabin, and spare parts storage.
 - Access road and internal road network
 - Stormwater infrastructure and drainage system
 - Water supply infrastructure.

Five communities were identified with the Project’s area of influence. The distance and orientation of these communities to the Project site is as follows: Kafin Dangi (3.74 km north east), Kauyan Maina (2.98 km east), Galadima (1 km south west), Gachi (2.32 km south east), and Kankia (2.46 km south).

Figure 1.2: Identified communities within 5 km radius of the Project site
1.3 Purpose of the Stakeholders Engagement Plan

Stakeholder engagement describes a variety of actions such as consultation, information sharing, participation, negotiation, and partnerships undertaken by a company on an ongoing basis in order to understanding its stakeholders’ concerns so as to build and maintain constructive relationships with the stakeholders. Stakeholder consultation is an essential process needed for the effective delivery of a project. It is an ongoing process between a company and its stakeholders that extends throughout the life cycle of a project.

The purpose of this SEP is to describe and document PASL's strategy and program for engaging with relevant stakeholders associated with the proposed Project. The SEP relates specifically to the engagement process for stakeholder groups that are “external” to the core operation of PASL business, such as affected communities, local government authorities, non-governmental organizations, civil society, and other interested or affected parties and the procedure for engaging with relevant regulatory authorities at regional and national level. The goal is to provide a framework around which PASL will build strong mutual relationship with its various stakeholders that incorporates sincere commitments and responsibility towards all stakeholders and provide opportunities for stakeholders to express their views and concerns, and allows the company to consider and respond to them.

1.4 Objectives of the Stakeholders Engagement Plan

The objectives of developing stakeholder engagement plan for the proposed Project include the following:

- Stakeholder inclusion and involvement across the various phases of the project;
- Ensuring clarity and understanding through an open, inclusive and transparent process of culturally appropriate engagement and communication undertaken to ensure that stakeholders are well informed about the proposed Project;
- Building and maintaining productive relationship between PASL and its various stakeholders through supporting open dialogue;
- Engaging vulnerable groups through an open and inclusive approach to consultation thus increases the opportunity for stakeholders to provide comment and voice their concerns on the proposed Project;
- Managing expectations to ensure that the proposed Project does not create or allow unrealistic expectations to develop amongst stakeholders about proposed Project benefits. The engagement process will serve as a mechanism for understanding and managing stakeholder and community
expectations, where the latter will be achieved by disseminating accurate information in an accessible way.

- Ensuring compliance with both local regulatory requirements and international best practice.
- Ensuring stakeholders are free of external manipulation or coercion.
SECTION TWO

LEGAL AND ADMINISTRATIVE FRAMEWORK GUIDING
STAKEHOLDER ENGAGEMENT

2.1 General Overview

This stakeholder engagement plan has been prepared to ensure compliance with both Nigerian legislative requirements, as well international standards (as defined in the IFC's Performance Standards for Environmental and Social Sustainability).

This section presents the relevant standards and legislation that relate directly to the public participation and stakeholder engagement requirements for the proposed Project.

2.2 Nigerian Legislative Requirements

In Nigeria, public authorities have the main responsibility of informing the public about developments that might affect the environment. The Federal Ministry of Environment (FMEnv) issues EIA guidelines for different sectors of the economy. It also provides publications to inform developers and the general public of applicable standards to be put in place to prevent environmental pollution during project development and operation. FMEnv is also the approving authority for EIAs in Nigeria.

Section 55 of the EIA Act No. 86 (1992) provides for the maintenance of a public registry for the purpose of facilitating public access to records relating to environmental assessments.

Section 6(b) of the EIA Act stipulates that Federal Environmental Protection Agency (now FMEnv) has the authority to collect EIA information and make it available through publications and other appropriate means. The public authorities, in cooperation with public or private organizations, are also responsible for making information available pertaining to pollution and environmental protection regulations. Members of the public and persons requiring clarifications on environmental issues can visit the offices of the FMEnv, or the specific state Ministry of Environment (such as Kastina State Ministry of Environment, as applicable to the proposed Project) for environment-related information.

FMEnv. EIA guidelines stipulate the engagement activities to be carried out during the EIA process, after which the submission of the draft EIA report is
done. The draft EIA report is then advertised through publication in at least 2 newspapers and made available for public review for a 21-working day. Public comments shall be submitted to the Director of the FMEnv within 14 days of the last publication. If additional information is required from project proponents 21 days will be given to the proponents to respond.

2.3 International Requirements

In addition to local requirements, this SEP is designed to ensure alignment with international good practice standards, in particular the IFC Performance Standards for Environmental and Social Sustainability (2012) and the Equator Principles.

2.3.1 The IFC Performance Standards

The IFC Performance Standards (PSs) on Environmental and Social Sustainability are a set of standards which the IFC requires its clients to apply while undertaking due diligence for corporate or project financing. The Performance Standards, totalling eight in number, provide a robust framework for assessing and managing the environmental and social risks and impacts associated with projects or companies to be financed so that development opportunities are enhanced.

The IFC PSs, specifically PS 1 and 3, aim at ensuring that the potentially affected communities are appropriately engaged on issues that could affect them in order to build and maintain a constructive relationship and to establish a proper mechanism for grievances resolution.

Table 2.1 summarizes the IFC requirements on stakeholder engagement.

<table>
<thead>
<tr>
<th>Specific Task</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who to Consult:</td>
<td>- Directly and indirectly affected communities;</td>
</tr>
<tr>
<td></td>
<td>- Positively and negatively affected communities/individuals;</td>
</tr>
<tr>
<td></td>
<td>- Those with influence due to local knowledge or political influence;</td>
</tr>
<tr>
<td></td>
<td>- Elected representatives;</td>
</tr>
<tr>
<td></td>
<td>- Non-elected community officials and leaders;</td>
</tr>
<tr>
<td></td>
<td>- Informal/traditional community institutions and/or elders;</td>
</tr>
</tbody>
</table>

1 PS 1: Assessment and Management of Environmental and Social Risks and Impacts; PS 2: Labour and Working Conditions; PS 3: Resource Efficiency and Pollution Prevention; PS 4: Community Health, Safety and Security; PS 5: Land Acquisition and Involuntary Resettlement; PS 6: Biodiversity Conservation and Sustainable Management of Living Natural Resources; PS 7: Indigenous Peoples; PS 8: Cultural Heritage
<table>
<thead>
<tr>
<th>Specific Task</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Indigenous peoples, where the project is identified to have adverse impacts on them; and</td>
</tr>
<tr>
<td></td>
<td>- Communities in the wider area of influence (AoI).</td>
</tr>
<tr>
<td>When to Consult:</td>
<td>- As early as possible, or at the latest consultation should begin prior to construction. Consultation should be an on-going process throughout the life of the project, i.e. iterative.</td>
</tr>
<tr>
<td></td>
<td>- Consultation should also allow for a feedback mechanism where affected people are able to present their concerns and grievances for consideration and redress.</td>
</tr>
<tr>
<td>What to Consult on:</td>
<td>- Disclosure of project information (purpose, nature, scale);</td>
</tr>
<tr>
<td></td>
<td>- Disclosure on the Action Plan as a result of consultation, with periodic reports to demonstrate implementation;</td>
</tr>
<tr>
<td></td>
<td>- Risks and impacts of the project; and</td>
</tr>
<tr>
<td></td>
<td>- Updates actions and proposed mitigation measures to address negative impacts and areas of concern for affected communities.</td>
</tr>
<tr>
<td>How to Consult:</td>
<td>- Be inclusive and culturally appropriate;</td>
</tr>
<tr>
<td></td>
<td>- Allow for free, prior and informed participation of affected communities;</td>
</tr>
<tr>
<td></td>
<td>- Be in the language preferred by the affected communities;</td>
</tr>
<tr>
<td></td>
<td>- Consider the needs of disadvantaged and vulnerable groups;</td>
</tr>
<tr>
<td></td>
<td>- Be fed into the decision making process including proposed mitigation, sharing of benefits and opportunities;</td>
</tr>
<tr>
<td></td>
<td>- Be iterative;</td>
</tr>
<tr>
<td></td>
<td>- Be documented;</td>
</tr>
<tr>
<td></td>
<td>- Be responsive to community concerns and grievances;</td>
</tr>
<tr>
<td></td>
<td>- Be easily understood and transparent; and</td>
</tr>
<tr>
<td></td>
<td>- Allow for differentiated means of engagement particularly for disadvantaged or vulnerable groups.</td>
</tr>
</tbody>
</table>

2.3.2 The Equator Principles

The Equator Principles, totaling nine (9)\(^2\) in number, are a set of principles that serve as a financial industry benchmark for determining, assessing and managing social and environmental risk in project financing.

Specifically, Principles 5 and 6 focus more on stakeholder engagement. The highlights of these principles are provided as follows:

Principle 5: Consultation and Disclosure

For all Category A and, as appropriate, Category B projects, the government, borrower or third party expert must consult with project affected communities in a structured and culturally appropriate manner. For projects with significant adverse impacts on affected communities, the process will ensure their free, prior and informed consultation and facilitate their informed participation as a means to establish whether a project has adequately incorporated affected communities' concerns.

In order to accomplish this, the Assessment documentation and AP, or non-technical summaries thereof, will be made available to the public by the borrower for a reasonable minimum period in the relevant local language and in a culturally appropriate manner. The borrower will take account of and document the process and results of the consultation, including any actions agreed resulting from the consultation. For projects with adverse social or environmental impacts, disclosure should occur early in the Assessment process and in any event before the project construction commences, and on an ongoing basis.

Principle 6: Grievance Mechanism

For all Category A and, as appropriate, Category B projects, the government, borrower or third party expert must ensure that consultation, disclosure and community engagement continues throughout construction and operation of the project. The borrower will, scaled to the risks and adverse impacts of the project, establish a grievance mechanism as part of the management system. This will allow the borrower to receive and facilitate resolution of concerns and grievances about the project's social and environmental performance raised by individuals or groups from among project-affected communities. The borrower will inform the affected communities about the mechanism in the course of its community engagement process and ensure that the mechanism addresses concerns promptly and transparently, in a culturally appropriate manner, and is readily accessible to all segments of the affected communities.
SECTION THREE

STAKEHOLDER IDENTIFICATION, ENGAGEMENT PROCESS, PREVIOUS CONSULTATION AND DISCLOSURE ACTIVITIES

3.1 Introduction

A stakeholder is defined as any individual or group who is potentially affected by a proposed project, or who has an interest in the project and its potential impacts. It is therefore important to establish the individuals groups and organizations, that are directly or indirectly affected (positively and negatively) by the proposed Project and which may have an interest in the Project. Stakeholder identification is an on-going process, requiring regular review and updating over the Project lifecycle. This SEP is intended to ensure that stakeholder concerns are duly considered, addressed and incorporated in the development process on a continuous basis.

3.1 Stakeholder Identification and Analysis

Proper stakeholder identification forms the basis on which a robust SEP is developed. It is necessary to determine who the stakeholders of a project are and understand their priorities and objectives. In addition it is also essential that stakeholders are classified based on their position, influence, capacity and interests in order to develop a functional SEP that is tailored to meet the individual and group needs of the identified stakeholders.

For most projects, diverse stakeholders are often identified and most times each stakeholder has peculiar concerns which are different from that of other stakeholders. So it is often beneficial to categorize the different stakeholder on the basis of their connections to the project so as to gain insight into the key objectives of engagement. It also important to understand how each stakeholder may be affected - or perceives they may be affected – so that engagement can be tailored to inform them and address their views and concerns in an appropriate manner.

As part of this process, it is also important to identify individuals and groups who may find it more difficult to participate and those who may be differentially or disproportionately affected by the Project because of their marginalized or vulnerable status.

A list of identified stakeholders for the proposed Project is shown in Table 3.1. This consists of individuals, groups, and organizations that may be affected by or
may influence project development positively or negatively. The list was developed using international guidance and considered the following groups:

- National, regional and local government;
- Local community leaders;
- Community members including vulnerable sub-groups such as women, youth and elderly;
- International, national and local environmental and social Non-Government Organizations (NGOs);
- Potential contractors and service suppliers; and
- Local businesses/ cooperatives and associations.

The list of potential stakeholders set out in Table 3.1 will be continuously revised as necessary throughout the project life cycle in line with the stakeholder identification, analysis and mapping procedure. This will ensure that all relevant parties have been, and continue to be considered as part of the Project engagement programme.
Table 3.1: Identified Stakeholders Associated with proposed Project

<table>
<thead>
<tr>
<th>Stakeholder Group and Interest in the proposed project</th>
<th>Stakeholder Name</th>
<th>Stakeholder Level</th>
<th>Connection to the Proposed Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Authorities</td>
<td>Federal Ministry of Environment (FMEnv)</td>
<td>National</td>
<td>National government are of primary importance in terms of establishing policy, granting permits or other approvals for the Project, and monitoring and enforcing compliance with Nigerian law throughout all stages of the Project life-cycle.</td>
</tr>
<tr>
<td></td>
<td>Nigerian Electricity Regulatory Commission (NERC)</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nigerian Bulk Electricity Trading (NBET) Plc.</td>
<td>Local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmission Company of Nigeria (TCN), Kankia, Katsina.</td>
<td></td>
<td>Katsina State and Kankia local authorities will be informed of progress and plans in their areas, to consider the proposed Project activities in their policy making, regulatory and other duties and activities.</td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Environment and Katsina Environmental Protection Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Lands, Housing and Urban Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kankia Local Government Authority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community and Potentially Affected</td>
<td>Kafin Dangi, Kauyan Maina, Kankia, Galadima, Gachi</td>
<td></td>
<td>Households, communities and groups that may be directly or indirectly affected by the Project.</td>
</tr>
<tr>
<td>Stakeholder Group and Interest in the proposed project</td>
<td>Stakeholder Name</td>
<td>Stakeholder Level</td>
<td>Connection to the Proposed Project</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Parties, PAP) within the Project’s area of influence.</td>
<td></td>
<td></td>
<td>proposed Project and its activities.</td>
</tr>
<tr>
<td>Non-Governmental Organizations (NGOs)</td>
<td>International Centre for Energy, Environment and Development (ICEED)</td>
<td>✓</td>
<td>NGOs with direct interest in the proposed Project, and its social and environmental aspects that are able to influence the Project directly or through public opinion.</td>
</tr>
</tbody>
</table>

Source: EnvAccord Scoping Study, 2014
3.2 Stakeholder Engagement Process

A good stakeholder engagement process offers a proactive approach to building a mutually beneficial relationship between a project developer and its stakeholders in a manner that meets with all appropriate regulatory requirements. Table 3.2 presents the elements of a stakeholder’s engagement program designed to comply with national and international standards throughout the life cycle of the Project.

Table 3.2: Stakeholder Engagement Process

<table>
<thead>
<tr>
<th>Process</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder Identification and Analysis</td>
<td>The process of identifying and prioritizing stakeholders and addressing their interests and concerns</td>
</tr>
<tr>
<td>Information Disclosure</td>
<td>The process of communicating information to stakeholders early in the decision making process in ways that are meaningful and accessible and on an ongoing basis throughout the project lifecycle.</td>
</tr>
<tr>
<td>Stakeholder Consultation</td>
<td>This entails the activities carried out to consult with the identified stakeholders. It begins with planning for each consultation, meeting, documenting the process and communicating follow-up</td>
</tr>
<tr>
<td>Negotiation and Partnerships</td>
<td>This entails activities done to foster the mutual interest of all parties and add value to the project the project developers and stakeholder relationship.</td>
</tr>
<tr>
<td>Grievance Management</td>
<td>This describes channels through which stakeholders are able to raise their concerns and grievances about the project throughout its lifecycle.</td>
</tr>
<tr>
<td>Stakeholder Involvement</td>
<td>This entails procedures that allow the direct involvement of stakeholders in project related functions in order to foster transparency and credibility.</td>
</tr>
<tr>
<td>Reporting to Stakeholders</td>
<td>This describes the reporting procedure that allows information disclosure to stakeholders about the environmental social and economic performance of the project.</td>
</tr>
<tr>
<td>Management Functions</td>
<td>This builds and maintains management capacity within the company to manage the process of stakeholder engagement track commitments and report on progress.</td>
</tr>
</tbody>
</table>
3.2.1 Stakeholder Engagement Tool and Communication

A variety of communication methods are used to carry out Stakeholder engagement/consultation. This is often determined by the objective of engagement, as well as the target stakeholder group. Among the traditional means for project communications are:

Table 3.3: Stakeholder Engagement Tool and Communication

<table>
<thead>
<tr>
<th>Medium</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td> Stakeholder meetings</td>
<td></td>
</tr>
<tr>
<td>Focus group discussions</td>
<td>The aim of a focus group discussion is to pull together stakeholders with the same interest into a single meeting to discuss common issues. Meetings usually have a very specific objective which is aligned with the expectations and interest of the stakeholders present.</td>
</tr>
<tr>
<td>Workshops</td>
<td>Workshops are ad-hoc outcomes based meetings and seek to find solutions for specific issues facing the environment, social aspects and the project. In many instances, issues identified through the EIA process or Grievance process will be tabled at such a workshop.</td>
</tr>
<tr>
<td>Forum</td>
<td>A forum is established with specific set objectives and would comprise of a specific group of stakeholders who would need to ensure that actions are taken and monitored.</td>
</tr>
<tr>
<td>One-on-one consultations</td>
<td>These are consultations held with specific individuals or groups. They are focussed to identify and discuss stakeholder concerns or to provide feedback using detailed information.</td>
</tr>
<tr>
<td> Written / visual communication</td>
<td></td>
</tr>
<tr>
<td>Report with structured content</td>
<td>These are short and concise document providing factual information about a project: e.g. Background Information Document</td>
</tr>
<tr>
<td>Maps</td>
<td>Maps are effective when placing into context well known locations, linear and single site developments, and change of fixed locations for developments, location options for developments and anticipated distances between developments or well-known locations.</td>
</tr>
</tbody>
</table>

The stakeholder engagement process for the proposed Project is highlighted below in Table 3.4.
Table 3.4: Stakeholders Engagement Process

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Stages/Procedure</th>
<th>Goals</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Project Execution, EIA</td>
<td>Project Notification</td>
<td>• Registration with FMEnv.</td>
<td>• Adequate consultation with authorities</td>
</tr>
<tr>
<td></td>
<td>Scoping and Design</td>
<td>• Discuss project design</td>
<td>• Reduce conflict areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure compliance with FMEnv regulations and guidelines</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Carry out initial stakeholder engagement with relevant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>government authorities, affected community, interested parties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Consultations</td>
<td>• Consult host communities on socio-economic aspects</td>
<td>• Ensure that the affected communities, being the primary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consult with public on health and EMF emission and risks of</td>
<td>stakeholders, understand the project and its benefits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electrical hazards concerns</td>
<td></td>
</tr>
<tr>
<td>Project Phase</td>
<td>Project Phase</td>
<td>Stages/Procedure</td>
<td>Goals</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| | | Environmental reviews, analysis, reporting and public presentation | ● Present results of field study
● Discuss the potential impact/mitigation measures with proponent and regulators
● Present the report for public review
● Allow stakeholders determine whether their concerns are | ● Ensure the Project developer understands the concerns and issues raised by the local communities so that appropriate mitigation measures can be taken.
● Seek approval of methodologies, results and Environmental Management Plan from State and Federal Regulators and the general public |
<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Project Phase</th>
<th>Stages/Procedure</th>
<th>Goals</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>adequately addressed through the ESIA report review process</td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
<td></td>
<td>• Bridge the gaps observed at public review</td>
<td>• Implement mechanism to ensure continuous consultation</td>
</tr>
<tr>
<td>Production of Final Report</td>
<td></td>
<td></td>
<td>• Finalize mitigation and disclose to stakeholders</td>
<td>• Mechanisms in place to ensure ongoing consultation and compliance with agreements</td>
</tr>
<tr>
<td>Implement EMP</td>
<td></td>
<td></td>
<td>• Disclose result of monitoring</td>
<td>• Implement audit of proponent’s project to assess social performance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Implement public complaints/grievance process</td>
<td>• Ensure meaningful ongoing consultation with stakeholders.</td>
</tr>
<tr>
<td>Project Phase</td>
<td>Project Phase</td>
<td>Stages/Procedure</td>
<td>Goals</td>
<td>Objectives</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Evaluation</td>
<td>• Assess effectiveness of consultation process</td>
<td>• Evaluate lessons that could enhance proponent services to public</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Consult stakeholders for their assessment</td>
<td>• Lessons learnt might be transferred to other projects.</td>
</tr>
<tr>
<td>Project execution,</td>
<td>Construction</td>
<td>Construction</td>
<td>• Consult with affected communities on any potential project impacts</td>
<td>• Implement mechanism to ensure continuous consultation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commissioning</td>
<td>• Receive feedback from affected communities on the effectiveness of recommended mitigation measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Continuously engage community members during project development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation</td>
<td>Operation</td>
<td>• Receive feedback</td>
<td>• Implement</td>
</tr>
<tr>
<td>Project Phase</td>
<td>Project Phase</td>
<td>Stages/Procedure</td>
<td>Goals</td>
<td>Objectives</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>from affected communities on the effectiveness of recommended mitigation measures</td>
<td>mechanism to ensure continuous consultation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Continuously engage community members during project development</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Consult with affected communities on any potential project impacts</td>
<td>• Implement mechanism to ensure continuous consultation</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>Decommissioning</td>
<td></td>
<td>• Receive feedback from affected communities on the effectiveness of recommended mitigation measures</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Previous Stakeholder Engagement, Consultation and Disclosure Activities

This section describes the activities that the Project has carried out to engage and consult with key stakeholders up till date. It describes the means by which they were consulted; and a brief summary of the outcome of engagement process which was done in line with the stakeholder engagement approach detailed in Table 3.2 above. At present the following stakeholder consultations have been held.

- Scoping Consultations involving a scoping workshop
- Town Hall Meeting
- Focused group Discussions
- Household Socio-economic survey

3.3.1 Scoping Consultations

A scoping workshop was held on the 16th of October 2014 at Al-Bhustan Hotels, 15 Yahaya Madaki Way, and Katsina State, as part of the EIA process for the Project. The workshop provided an opportunity for the identified stakeholders to participate and contribute to the EIA process.

The following stakeholders were invited to the scoping workshop.

- Federal Ministry of Environment (FMEnv)
- Nigerian Electricity Regulatory Commission (NERC)
- Transmission Company of Nigeria (TCN), Kankia, Katsina State
- Katsina State Ministry of Environment
- Katsina State Ministry of Lands, Housing and Urban Development
- Kankia Local Government Authority
- The Local Communities (Magaji Gari, Kafin Dangi, Kyauyan Maina Communities and other communities/settlements within the Project’s area of influence.)
- International Centre for Energy, Environment and Development (ICEED)

Prior to the scoping workshop invitation letters that had a Background Information Document (BID) attached were sent out to the invited stakeholders to inform them about the Project and the scoping workshop. During the scoping workshop, stakeholders were provided with comprehensive information about the Project and their opinion was received along with other related feedback.

3.3.2 Town Hall Meeting

A town hall meeting was held to engage the various communities potentially affected by the proposed Project. The meeting, which was held at the palace of
head of Kankia District, was attended by the Kankia District Head, Community Heads and Ward heads from the five (5) affected communities in the project’s area of influence. They were all duly informed by EnvAccord about the project while their opinion and position was sought. The deliberations were held in English language and interpreted to Hausa for better understanding. The community leaders present generally welcomed the project and made commitments to support its success.

Plate 3.1: EnvAccord Field team, Kankia District Head and Village Heads

3.3.2 Focus Group Discussions
Focus group discussions (FGD) were held with various groups from all the five communities within the project’s area of influence. The aim of the FGD was to inform the community representatives about the proposed project, with regards to the purpose of the project, project benefits, project activities, likely impacts and proposed mitigation measures. In addition, the FGD was an avenue for the individual groups to give their opinion and concerns about the project and its activities and their expectations with regards the PASL’s Corporate Social Responsibility (CSR). The FGD was held at the Kankia District’s head palace with members of the Women, Farmers, Hunters and Youth Groups (Plates 3.2 to 3.4).
Plate 3.2: Focus Group Discussion session with representatives of adult women group from the affected communities in the study area

Plate 3.3: Focus Group Discussion session with representatives of hunters and farmers groups from the affected communities in the study area
3.3.3 **Household Socio-economic survey**

Household socio-economic surveys were conducted across all communities identified to be within the project area of influence i.e. (Gachi, Galadima, Kauyan Maina, Kafin Dangi and Kankia) (Plates 3.5 and 3.6). This engagement was done using various tools e.g. survey questioners, key informants interviews and direct observation. The survey sampling technique adopted for this study was chosen to ensure that sampling was random and representative of each community in the project area of influence.

Based on observations made during the survey it could be said that the general opinion towards the project, in all host communities, was one that showed delight. They expressed their support in view of the opportunities that the project would present.
Plate 3.5: Respondents during Socio-economic survey

Plate 3.6: Cross-section of community residents during household Socio-economic survey
Table 3.5 Summary of Previously conducted Stakeholder Engagement Activities

<table>
<thead>
<tr>
<th>Stakeholder Group and Interest in the proposed project</th>
<th>Stakeholder Name</th>
<th>Connection to the Proposed Project</th>
<th>Means of Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Authorities</td>
<td>Federal Ministry of Environment (FMEnv)</td>
<td>National government are of primary importance in terms of establishing policy, granting permits or other approvals for the Project, and monitoring and enforcing compliance with Nigerian law throughout all stages of the Project life-cycle.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Nigerian Electricity Regulatory Commission (NERC)</td>
<td></td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Nigerian Bulk Electricity Trading (NBET) Plc.</td>
<td></td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Transmission Company of Nigeria (TCN), Kankia, Katsina.</td>
<td></td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Environment</td>
<td></td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Katsina State Ministry of Lands, Housing and Urban Development</td>
<td></td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Kankia Local Government Authority</td>
<td>Katsina local State and Kankia authorities will be informed of progress and plans in their areas, to consider the proposed Project activities in their policy making, regulatory and other duties and</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>
Stakeholder Group and Interest in the proposed project

<table>
<thead>
<tr>
<th>Stakeholder Name</th>
<th>Connection to the Proposed Project</th>
<th>Means of Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scoping Workshop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIA (Field Work)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Letter and BID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scoping Workshop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Town Hall Meeting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Focused group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>household socio-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>economic survey</td>
</tr>
<tr>
<td>Communities and</td>
<td>Households and communities that may be directly or indirectly affected by the proposed Project and its activities.</td>
<td>✔️</td>
</tr>
<tr>
<td>Potentially</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected Parties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magaji Gari,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kafin Dangi,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyauyen Maina,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gachi and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galadima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected Parties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Governmental</td>
<td>International Centre for Energy, Environment and Development (ICEED)</td>
<td>✔️</td>
</tr>
<tr>
<td>Organizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NGOs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stakeholder Group and Interest in the proposed project refers to the various groups and interests involved in the proposed project. The table lists the stakeholder group, stakeholder name, connection to the proposed project, and means of engagement. The means of engagement include Scoping Workshop, EIA (Field Work), Letter and BID, Scoping Workshop, Town Hall Meeting, Focused group Discussions, and household socio-economic survey.
SECTION FOUR

POST COMMISSIONING STAKEHOLDERS ENGAGEMENT ACTIVITIES

4.1 Stakeholder Engagement Plan

This section presents the plan to ensure that the identified stakeholders are continuously engaged throughout the project lifecycle i.e. (from the EIA process into the construction and ultimately during the operations and decommissioning) of the proposed facility. To fulfill the objectives for stakeholder engagement, the project has developed this plan which lays out a process for consultation and disclosure.

4.2 Management Commitment

PASL is committed to implementing stakeholder management as part of its operations. As such PASL will ensure that the responsibility for implementing the SEP is duly assigned and all components of the plan are well-defined within its organizational processes. PASL shall also commit to providing the necessary support to implement the SEP. The management structure for the SEP shall include the following elements.

Systems: PASL will pursue its Stakeholder engagement activities as scheduled in a systematic manner that creates predictability in the eyes of the stakeholder in order to supports and foster of a relationship based on trust.

Structure: PASL will establish a Stakeholder focused-structure within its organizational processes to provide the needed decision-making authority to enable quicker turnaround time on Stakeholder engagement activities and grievance feedback.

Skills: PASL will ensure that the required internal capacity for effective Stakeholder engagement is provided for the implementation of the SEP.

4.3 Communication and Feedback

PASL communication strategy shall be focus on the specific objective of engagement and the option considered most suitable to effectively pursue consultation with the concerned stakeholders. Thus, all tradition communication tools for stakeholder engagement shall be applied in a manner to suit the specific consultation requirement and situation. As such, at the local level (local government and community), the primary focus of engagement shall be direct communication via face-to-face or verbal techniques such as public meetings.
FGDs, key informant Interviews. This would be adopted to reinforce a two-way dialogue. The use of facilitators or interpreters at the local level would be adopted when necessary to ensure the information dissemination is effective and the community properly understand the project and are able to fully express their opinion.

PASL shall provide a feedback mechanism to ensure stakeholders affected by or interested in the proposed Project can present their input (e.g. opinions, requests, suggestions and grievances) for consideration and, if required, seek redress. The feedback mechanism shall function in a non-judgmental manner and record all feedback received. Grievances are any complaints or suggestions about the way a project is being implemented. They may take the form of specific complaints for damages/injury, concerns about routine project activities, or perceived incidents or impacts. Identifying and responding to grievances supports the development of positive relationships between projects host communities and other affected stakeholders. Grievances can be an indication of growing stakeholder concerns (real and perceived) and can escalate if not identified and resolved. The management of grievances is therefore a vital component of stakeholder management and an important aspect of risk management for a project.

4.4 Grievance mechanism

A grievance mechanism shall be provide to formally address stakeholder concerns on an ongoing basis and provide avenue for stakeholders to engage with the company, in line with International good practice. The process adopted shall provide avenues to receive and resolve concerns and grievances of affected communities promptly using an understandable and transparent process that is culturally appropriate and readily acceptable to all segments of affected communities, at no cost and without retribution.
Table 4.1: PASL Stakeholder Engagement Implementation Plan

<table>
<thead>
<tr>
<th>Project Stage/Process</th>
<th>Engagement/Consultation</th>
<th>Responsible Party</th>
<th>Objective</th>
<th>Stakeholders</th>
<th>Medium/Approach</th>
<th>Necessary Actions/Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Project Execution</td>
<td>With regards to the engagement/consultation activities associated with the EIA process, some of the stipulated requirements in the Nigerian regulatory framework EIA Act No. 86 of 1992 have been observed already. These include the engagement activities that took place during the Project Notification, scoping and design and field consultation stages of the EIA process of the project as presented in the stakeholder engagement process (Table 3.2) of section 3 of this report. As such these activities form the basis on which subsequent engagement/consultation processes have been planned since the knowledge gathered already provides an opportunity for coordinating subsequent engagement/consultation activities. With this in view it is planned that the engagement/consultations for the remaining stages of the EIA process are conducted as follows.</td>
<td>PASL</td>
<td>Identify stakeholders, Initiate engagement, Brief stakeholder about proposed project, Understand stakeholder position and appropriate engagement mediums, Build relationships with stakeholders, Determine the required processes and way forward</td>
<td>National Government, Regional / District Government, Local Government, Traditional Authorities, Communities, Local consultants</td>
<td>Background Information Document (BID), One-on-one consultations, Letter, Telephone</td>
<td>• Project Notification, • scoping and design, • field consultation</td>
</tr>
<tr>
<td>Project</td>
<td>Engagement Consultation stage/process</td>
<td>Responsible Party</td>
<td>Objective</td>
<td>Stakeholders</td>
<td>Medium/Approach</td>
<td>Necessary Actions/Status</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| Final Report, Final Evaluation and Environmental Management Plan (EMP): On completion of the draft EIA report and submission to FMEnv. The report will be subjected to a review by a panel of experts constituted by FMEnv. The panel would likely comprise experts from within FMEnv. as well as external specialists included because of their topic expertise. Following the review period, the findings will be presented to the project. This will be in the form of a public hearing. The project will then need to take appropriate actions to address the findings. This may include additional studies; revision to the report text to correct or clarify content; or development of additional mitigation measures or management actions. Upon satisfactory completion of the actions required to address the findings, the draft EIA report will be finalized and the FMEnv will issue the EIA Approval and Certification. | FMEnv, Katsina State Ministry of Environment, Kankia Local Government, the General Public | Sustain relationships Provide clarity on progress Address grievances and stakeholder comments | National Government Regional / Government Local Government Traditional Authorities Communities | EIA Reports | - Panel Review
- Public Hearing
Status: On-going |
<table>
<thead>
<tr>
<th>Project Stage/Process</th>
<th>Responsible Party</th>
<th>Objective</th>
<th>Stakeholders</th>
<th>Medium/Approach</th>
<th>Necessary Actions/Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Engagement Consultation</td>
<td>PASL</td>
<td>Building relationships</td>
<td>Local Government</td>
<td>Letters</td>
<td>Status: Pending</td>
</tr>
<tr>
<td>Construction: on the completion of the EIA process and receipt of the required regulatory approvals and permits PASL is expected to notify the host communities before initiating ground clearing and construction activities.</td>
<td>Mange stakeholder expectations</td>
<td>Traditional Authorities</td>
<td>Group discussions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Commissioning: Notify stakeholders of the commissioning date and process.</td>
<td>Communities</td>
<td>Meetings</td>
<td>The PAP including local women will be further engaged through a non-technical executive summary which, where required, will be translated into local languages.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation: Facility operation</td>
<td>PASL</td>
<td>Building relationships</td>
<td>Local Government</td>
<td>Letters</td>
<td>Engagement of a community liaison officer (CLO)</td>
</tr>
<tr>
<td>Mange stakeholder expectations</td>
<td>Traditional Authorities</td>
<td>Group discussions</td>
<td>Publishing of annual performance report.</td>
<td>Meetings</td>
<td></td>
</tr>
<tr>
<td>Decommissioning</td>
<td>PASL</td>
<td>Building relationships</td>
<td>Local Government</td>
<td>Letters</td>
<td>Engagement of a community liaison officer CLO</td>
</tr>
<tr>
<td>Mange stakeholder expectations</td>
<td>Traditional Authorities</td>
<td>Group discussions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communities</td>
<td>Meetings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION FIVE

MONITORING AND REPORTING

5.1 Monitoring Stakeholder Engagement Activities

Monitoring is an essential part of a stakeholder engagement process in order to ensure that consultation and disclosure efforts are effective, and in particular that stakeholders have been meaningfully consulted throughout the process.

The PASL stakeholder engagement process will be monitored as follows:

PASL will conduct periodic review of engagement and consultations held with stakeholders to assess its effectiveness. The performance evaluation will assess the extent to which the engagement activities and outputs meet those outlined in the SEP. A review of stakeholder feedback and other engagement outcomes will be used as data inputs for the review process. PASL would adopt an evaluation approach that assesses the performance of engagements both during and between engagement sessions.

In assessing performance the following will be considered:

- Materials disseminated: types, frequency, and location; place and time of formal engagement events and level of participation including by specific stakeholder groups (e.g. women, youth, and cultural leaders);
- Number of comments received assessing the topic, type of stakeholder and details of feedback provided;
- Numbers and type of stakeholders who come into contact with the Project team by all means of communication;
- Meeting minutes, attendance registers and photographic evidence;
- Comments received by government authorities, village leaders and other parties and passed to the Project;
- Numbers and types of feedback and/or grievances and the nature and timing of their resolution; and
- The extent to which feedback and comments have been addressed and have led to corrective actions being implemented.

5.2 Reporting

Project performance reporting will be carried out on a regular basis to provide feedback to stakeholders throughout the project lifecycle. Reporting back to stakeholders will enable PASL to resolve potential project risks and ensure that PASL can achieve its environmental and social objectives.