GENERALIDADES

<table>
<thead>
<tr>
<th>TÍTULO DEL DOCUMENTO:</th>
<th>ESTUDIO DE IMPACTO AMBIENTAL PARA LA LÍNEA DE CONEXIÓN SUBESTACIÓN NUEVA COLONIA-PUERTO ANTIOQUIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCUMENTO No.:</td>
<td>GAT-702-18-CA-AM-PIO-25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>APROBACIÓN</td>
<td></td>
</tr>
<tr>
<td>REVISIÓN NO:</td>
<td>Versión</td>
</tr>
<tr>
<td>V0</td>
<td>Nombre: Juliana Castro / Ingeniera Ambiental</td>
</tr>
<tr>
<td></td>
<td>Fecha: 05/07/2019</td>
</tr>
<tr>
<td>ELABORA / CARGO</td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>Nombre: Juliana Castro / Ingeniera Ambiental</td>
</tr>
<tr>
<td></td>
<td>Fecha: 05/07/2019</td>
</tr>
<tr>
<td>ELABORA / CARGO</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>Nombre: Juan José Cardona / Coordinador Ambiental</td>
</tr>
<tr>
<td></td>
<td>Fecha: 05/07/2019</td>
</tr>
<tr>
<td>REVISA / CARGO</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>Nombre: Juan José Cardona / Coordinador Ambiental</td>
</tr>
<tr>
<td></td>
<td>Fecha: 06/07/2019</td>
</tr>
<tr>
<td>APRUEBA / CARGO</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>Nombre: Sebastian Piedrahita / Director Ambiental</td>
</tr>
<tr>
<td></td>
<td>Fecha: 11/07/2019</td>
</tr>
</tbody>
</table>
TABLA DE CONTENIDO

| Página |
| --- | --- |
| 2 | GENERALIDADES .. 9 |
| 2.1 | Antecedentes ... 9 |
| 2.1.1 | Trámites ambientales ... 9 |
| 2.1.2 | Marco normativo ... 9 |
| 2.2 | Alcances ... 11 |
| 2.3 | Metodología .. 13 |
| 2.3.1 | Descripción del proyecto ... 13 |
| 2.3.2 | Área de influencia ... 14 |
| 2.3.2.1 | Fase 1. Delimitación preliminar del área de influencia 14 |
| 2.3.2.2 | Fase 2. Identificación de impactos ambientales .. 14 |
| 2.3.2.3 | Fase 3. Delimitación definitiva del área de influencia 15 |
| 2.3.3 | Caracterización del área de influencia ... 15 |
| 2.3.3.1 | Medio abiótico .. 15 |
| 2.3.3.1.1 | Geología .. 15 |
| 2.3.3.1.2 | Geomorfología .. 16 |
| 2.3.3.1.3 | Paisaje ... 17 |
| 2.3.3.1.4 | Suelos y uso de la tierra .. 21 |
| 2.3.3.1.5 | Hidrología .. 25 |
| 2.3.3.1.6 | Calidad del agua .. 39 |
| 2.3.3.1.7 | Usos del agua .. 48 |
| 2.3.3.1.8 | Hidrogeología .. 48 |
| 2.3.3.1.9 | Geotecnia .. 49 |
| 2.3.3.1.10 | Atmósfera .. 51 |
| 2.3.3.2 | Medio biótico .. 58 |
| 2.3.3.2.1 | Ecosistemas terrestres ... 58 |
| 2.3.3.2.2 | Ecosistemas acuáticos .. 76 |
2.3.3.2.3 Ecosistemas estratégicos, sensibles y/o áreas protegidas 83
2.3.3.3 Medio socioeconómico ... 83
2.3.3.3.1 Revisión documental .. 84
2.3.3.3.2 Levantamiento de información primaria ... 85
2.3.3.3.3 Elaboración de informe ... 86
2.3.3.3.4 Participación y socialización con las comunidades 86
2.3.3.3.5 Componente demográfico .. 87
2.3.3.3.6 Componente espacial .. 88
2.3.3.3.7 Componente económico ... 88
2.3.3.3.8 Componente cultural ... 89
2.3.3.3.9 Componente arqueológico ... 89
2.3.3.3.10 Componente político – organizativo ... 90
2.3.3.3.11 Tendencias de desarrollo ... 90
2.3.3.3.12 Información sobre población a reasentar 91
2.3.4 Servicios ecosistémicos ... 91
2.3.4.1 Revisión de fuentes de información secundaria 92
2.3.4.2 Identificación de los ecosistemas presentes en el área de influencia del proyecto 93
2.3.4.3 Fase de campo ... 93
2.3.4.4 Impacto y dependencia del proyecto sobre los servicios ecosistémicos93
2.3.5 Zonificación ambiental ... 94
2.3.6 Demanda, uso, aprovechamiento y/o afectación de recursos naturales96
2.3.6.1 Aguas superficiales .. 96
2.3.6.2 Aguas subterráneas .. 96
2.3.6.3 Vertimientos ... 96
2.3.6.4 Ocupación de cauces ... 97
2.3.6.5 Aprovechamiento forestal ... 97
2.3.6.6 Emisiones atmosféricas ... 97
2.3.6.7 Materiales de construcción .. 97
2.3.7 Evaluación ambiental ... 98
2.3.7.1 Identificación de factores ambientales susceptibles a recibir impactos (FARI) 98
2.3.7.2 Identificación de acciones susceptibles de producir impacto - ASPI (escenario sin proyecto y con proyecto)... 99
2.3.7.3 Identificación y Evaluación cuantitativa y cualitativa de impactos ambientales (escenario sin proyecto y con proyecto)... 99
2.3.7.3.1 Identificación de impactos ambientales ... 99
2.3.7.3.2 Evaluación cuantitativa y cualitativa de impactos ambientales (escenario sin proyecto y con proyecto)... 100
2.3.7.4 Análisis de impactos.. 105
2.3.7.4.1 Impactos acumulativos .. 106
2.3.7.4.2 Impactos sinérgicos.. 108
2.3.7.4.3 Impactos residuales.. 109
2.3.8 Zonificación de manejo ambiental del proyecto .. 110
2.3.9 Evaluación económica ambiental ... 111
2.3.9.1 Análisis Costo Beneficio - ACB.. 112
2.3.10 Planes y programas... 118
2.3.10.1 Plan de manejo ambiental ... 118
2.3.10.1.1 Programas de manejo ambiental ... 118
2.3.10.1.2 Programas de seguimiento y monitoreo .. 118
2.3.10.1.3 Plan de gestión del riesgo ... 118
2.3.10.1.4 Plan de desmantelamiento y abandono ... 122
2.3.10.1.5 Plan de compensación por pérdida de biodiversidad 123

LISTA DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 2.1</td>
<td>Marco normativo</td>
<td>9</td>
</tr>
<tr>
<td>Tabla 2.2</td>
<td>Criterios para la valoración de los niveles de integridad escénica</td>
<td>20</td>
</tr>
<tr>
<td>Tabla 2.3</td>
<td>Codificación de los grados de conflictos de uso del suelo</td>
<td>24</td>
</tr>
<tr>
<td>Tabla 2.4</td>
<td>Estaciones de Precipitación en la zona del proyecto</td>
<td>25</td>
</tr>
</tbody>
</table>
Tabla 2.5 Estación de caudal usada para la caracterización del régimen hidrológico. ... 25
Tabla 2.6 Periodos de ocurrencia para estimar los caudales máximos a partir de la ecuación de homogeneidad hidrológica. .. 31
Tabla 2.7 Puntos de monitoreo de calidad del agua.. 39
Tabla 2.8 Tipo de recipiente, preservación y método de medición de las muestras. 40
Tabla 2.9 Tipo de recipientes, preservación y método de medición de muestras. 41
Tabla 2.10 Tipo de recipientes, preservación y método de medición de las muestras. .. 42
Tabla 2.11 Criterios de calidad del agua según el Decreto 1076 de 2015 42
Tabla 2.12 Rangos comunes de concentraciones de macronutrientes y DBO según el estado trófico del agua .. 43
Tabla 2.13 Clasificación de calidad del agua en función del índice de calidad 44
Tabla 2.14 Variables fisicoquímicas y bacteriológicas tenidas en cuenta para la determinación de los índices de contaminación del agua (ICO’s). 45
Tabla 2.15 Valores de colores para los índices ICO’s ... 46
Tabla 2.16 Parámetros analizados ... 46
Tabla 2.17 Límite establecido .. 47
Tabla 2.18 Estaciones meteorológicas del IDEAM ... 52
Tabla 2.19 Puntos de monitoreo de calidad del aire ... 53
Tabla 2.20 Parámetros monitoreados ... 54
Tabla 2.21 Coordenadas estaciones de monitoreo .. 56
Tabla 2.22 Equipos utilizados .. 57
Tabla 2.23 Descripción de los estados de sucesión ... 65
Tabla 2.24 Méticas e índices del paisaje ... 69
Tabla 2.25 Fuentes de información secundaria ... 85
Tabla 2.26 Tipos de servicios ecosistémicos .. 92
Tabla 2.27 Grado de dependencia de la comunidad al servicio ecosistémica 93
Tabla 2.28 Nivel de impacto que el proyecto tiene sobre los servicios ecosistémicos .. 94
Tabla 2.29 Escala de colores para medir la sensibilidad ambiental 95
Tabla 2.30 Ejemplo de la Matriz Causa – Efecto usada para el escenario con y sin proyecto 100
Tabla 2.31 Criterios para definir la importancia de un impacto 101
Tabla 2.32 Valoración cualitativa de la importancia (I) del impacto 104
Tabla 2.33 Interpretación del indicador RBC 117
Tabla 2.34 Matriz de análisis cualitativo de riesgos 119

LISTA DE FIGURAS

Página

Figura 2.1 Escala de análisis de visibilidad paisajística 21
Figura 2.2 Esquema balance hidrológico ... 36
Figura 2.3 Puntos de monitoreo de calidad del agua 39
Figura 2.4 Esquema Draga tipo Petersen .. 47
Figura 2.5 Ubicación de los puntos de monitoreo de calidad del aire 54
Figura 2.6 Índices de calidad del aire para cada parámetro 55
Figura 2.7 Localización puntos de monitoreo 57
Figura 2.8 Tendencias de estratificación para los diagramas de dispersión de copas 64
Figura 2.9 Ubicación de las estaciones de muestreo de flora y fauna acuática 77
Figura 2.10 Manifestación temporal de un impacto acumulativo 107
Figura 2.11 Representación de un impacto acumulativo 108
Figura 2.12 Representación de un impacto sinérgico 108
Figura 2.13 Impactos simples (1 y 2) y sinérgico (3) 109
Figura 2.11 Pasos a seguir en la metodología de transferencia de beneficios 116
Figura 2.15 Esquema de mando general del comité de emergencias 122
LISTA DE FOTOGRAFÍAS

Fotografía 2.1	Procedimiento de muestreo de perifiton	78
Fotografía 2.2	Procedimiento de muestreo de macrófitas	80
Fotografía 2.3	Procedimiento de muestreo de macroinvertebrados bentónicos	81
Fotografía 2.4	Procedimiento de muestreo de peces	83

LISTA DE ECUACIONES

Ecuación 2.1	Balance hídrico en la atmósfera	37
Ecuación 2.2	Balance hídrico del suelo	37
Ecuación 2.3	Balance hídrico en el volumen de control	37
Ecuación 2.4	Balance hídrico a largo plazo	37
Ecuación 2.5	Índice de aridez	38
Ecuación 2.6	Índice de retención y regulación hídrica	38
Ecuación 2.7	Cálculo de Índice de calidad del aire	55
Ecuación 2.8 (IVI)	Expresión matemática para hallar el índice de valor de importancia	61
Ecuación 2.9	Ecuación para hallar la abundancia relativa	61
Ecuación 2.10	Ecuación para hallar la frecuencia relativa	61
Ecuación 2.11	Ecuación para hallar la dominancia relativa	62
Ecuación 2.12	Ecuación para hallar el cociente de mezcla	62
Ecuación 2.13	Expresión matemática para hallar el índice de Margalef	65
Ecuación 2.14	Ecuación para calcular el índice de Menhinick	66
Ecuación 2.15	Ecuación para calcular el Índice de Shannon	66
Ecuación 2.16 Ecuación para hallar la proporción de individuos 66
Ecuación 2.17 Ecuación para calcular el índice de dominancia de Simpson 67
Ecuación 2.18 Ecuación para calcular el Índice de existencia........................... 68
Ecuación 2.19 Ecuación para calcular el índice de equitabilidad de Pielou 72
Ecuación 2.20 Ecuación para calcular la serie de números de Hill 79
Ecuación 2.21 Formula general de volumen FAO ... 97
Ecuación 2.22 Importancia del impacto de carácter negativo.......................... 103
Ecuación 2.23 Importancia del impacto de carácter positivo 103
2 GENERALIDADES

2.1 ANTECEDENTES

En el presente ítem se encuentra la información referente a los trámites realizados ante las autoridades ambientales competentes que tienen jurisdicción aplicable a la Línea de conexión subestación Nueva Colonia – Puerto Antioquia, en el municipio de Turbo, departamento de Antioquia.

2.1.1 Trámites ambientales

Mediante el representante legal de la empresa PIO S.A.S se solicitó ante la Corporación para el Desarrollo Sostenible del Urabá – CORPOURABA el pronunciamiento sobre la necesidad de presentar o no un Diagnóstico Ambiental de Alternativas – DAA, en el marco del proyecto Línea de conexión subestación Nueva Colonia – Puerto Antioquia, con solicitud número 0716.

CORPOURABA da respuesta mediante el radicado 100-06-01-01-0449 del 14 de febrero de 2019, donde concluye que el tipo de proyecto a implementar no hace parte del Sistema de Transmisión Nacional (STN), por lo cual no requiere la presentación de Diagnóstico Ambiental de Alternativas – DAA, de acuerdo con el artículo 2.2.2.3.4.2 del Decreto 1076 de 2015.

2.1.2 Marco normativo

Para el adecuado desarrollo del Estudio de Impacto Ambiental se debe cumplir con la legislación ambiental vigente y siguiendo las metodologías publicadas por la Autoridad Ambiental competente. En la Tabla 2.1 se presentan las principales leyes, decretos, códigos y resoluciones que fueron considerados en el presente estudio.

<table>
<thead>
<tr>
<th>Tabla 2.1 Marco normativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marco General</td>
</tr>
<tr>
<td>Ley 09 de 1979</td>
</tr>
<tr>
<td>La Constitución Nacional de 1991</td>
</tr>
</tbody>
</table>
Marco General

<table>
<thead>
<tr>
<th>Ley 99 de 1993</th>
<th>Ley General Ambiental de Colombia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreto 2820 de 2010</td>
<td>Establece y clasifica los tipos de proyectos que están en cabeza de las diferentes autoridades ambientales, así como los alcances de los estudios ambientales y los procedimientos para el trámite de una licencia ambiental.</td>
</tr>
<tr>
<td>Decreto 1076 (26 de Mayo de 2015)</td>
<td>Por medio del cual se expide el Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible.</td>
</tr>
<tr>
<td>Decreto 1402 del 25 de Julio de 2018</td>
<td>Por la cual se adopta la metodología para la elaboración y presentación de estudios ambientales y se toman otras determinaciones.</td>
</tr>
<tr>
<td>TdR-17</td>
<td>Términos de referencia para la elaboración de Estudios de Impacto Ambiental-EIA en proyectos sistema de transmisión eléctrica.</td>
</tr>
</tbody>
</table>

Normas sobre aguas marítimas y no marítimas

<table>
<thead>
<tr>
<th>Decreto 1076 de 2015 Capítulo 2</th>
<th>Uso y aprovechamiento del agua.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución 631 de 2015</td>
<td>Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones.</td>
</tr>
<tr>
<td>Resolución 1514 de 2012</td>
<td>Por la cual adoptan términos de referencia para la elaboración del plan de gestión del riesgo para el manejo de vertimientos.</td>
</tr>
</tbody>
</table>

Normas sobre paisaje

| Decreto 0877 de 1976 | Por el cual se señalan prioridades referentes a los diversos usos del recurso forestal, a su aprovechamiento y al otorgamiento de permisos y concesiones y se dictan otras disposiciones. |
| Decreto 1715 de 1978 | Reglamentario sobre protección del paisaje. |

Normas sobre manejo y transporte de residuos

Resolución 541 de 1994	Regula el cargo, descargo, transporte, almacenamiento y disposición final de escombros, materiales, elementos, concretos y agregados sueltos, de construcción, de demolición y carga orgánica, suelo y subsuelo de excavación.
Resolución 318 de 2000.	Condiciones técnicas para el manejo, almacenamiento, transporte, utilización y disposición de aceites usados.
Decreto 1713 de 2002	Prestación del servicio público de aseo y la gestión integral de residuos sólidos.
Decreto 4741 de 2005	La prevención y manejo de los residuos y desechos peligrosos en el marco de la gestión integral.
Resolución 1402 de 2006	Por la cual se desarrolla parcialmente el decreto 4741 del 30 de diciembre de 2005, en materia de residuos sólidos o desechos peligrosos.

Normas sobre participación comunitaria y patrimonio cultural

Ley 163 de 1959	Enuncia los elementos que se consideran patrimonio de la nación y los procedimientos legales para realizar trabajos de arqueología.
Ley 70 de 1993	Protección de la identidad cultural y derechos de las comunidades negras de Colombia.
Ley 134 de 1994	Sobre mecanismos de participación.
Decreto 1320 de 1998	Reglamenta consultas previas a comunidades indígenas y negras.
Decreto 2613 de 2013	Por el cual se adopta el protocolo de coordinación interinstitucional para la consulta previa.

Normas sobre aire y ruido

Resolución 0610 de 2010	Por la cual se modifica la Resolución 601 del 4 de abril de 2006 donde se establece la norma nacional de emisión de ruido y ruido ambiental.
Resolución 2254 de 2017	Por el cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones.
Decreto 948 de 1995	En relación con la prevención y control de la contaminación atmosférica y la protección de la calidad del aire.

Normas sobre fauna y flora

Decreto 1791 de 1996	Se establece el régimen de aprovechamiento forestal.
Ley 611 de 2000	Manejo sostenible de especies de Fauna Silvestre y Acuática.
Decreto 1021 de 2006	Por la cual se expide la Ley General Forestal.
Marco General

<table>
<thead>
<tr>
<th>Normativa</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución 383 de 2010</td>
<td>Por la cual se declaran las especies silvestres que se encuentran amenazadas en el territorio nacional y se toman otras determinaciones.</td>
</tr>
<tr>
<td>Decreto 3016 de 2013</td>
<td>Por el cual se reglamenta el permiso de estudio para la recolección de especímenes de especies silvestres de la diversidad biológica con fines de elaboración de estudios ambientales.</td>
</tr>
<tr>
<td>Resolución 0192 de 2014</td>
<td>Por la cual se establece el listado de las especies silvestres amenazadas de la diversidad biológica colombiana que se encuentran en el territorio nacional, y se dictan otras disposiciones.</td>
</tr>
</tbody>
</table>

Norma sobre explotación de materiales de construcción

<table>
<thead>
<tr>
<th>Normativa</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley 685 de 2001</td>
<td>Código de Minas.</td>
</tr>
<tr>
<td>Resolución 1083 de 1996</td>
<td>Por el cual se ordena el uso de fibras naturales en obras, proyectos o actividades objeto de licencia ambiental.</td>
</tr>
</tbody>
</table>

Norma sobre aspectos arqueológicos

<table>
<thead>
<tr>
<th>Normativa</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley 163 de 1959</td>
<td>Por la cual se dictan medidas sobre defensa y conservación del patrimonio histórico, artístico y monumentos públicos de la Nación.</td>
</tr>
<tr>
<td>Ley 397 de 1997</td>
<td>Por la cual se desarrollan los artículos 70, 71 y 72 y demás artículos concordantes de la Constitución Política y se dictan normas sobre patrimonio cultural, fomentos y estímulos a la cultura, se crea el Ministerio de Cultura y se trasladan algunas dependencias.</td>
</tr>
<tr>
<td>Decreto 833 de 2002</td>
<td>Por el cual se reglamenta parcialmente la Ley 397 de 1997 en materia de Patrimonio Arqueológico Nacional y se dictan otras disposiciones.</td>
</tr>
</tbody>
</table>

Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019

2.2 ALCANCES

El presente Estudio de Impacto Ambiental pretende presentar ante la Autoridad Ambiental los instrumentos necesarios para que estudien la viabilidad ambiental del proyecto, entregando información sobre el área de influencia, identificar y valorar los posibles impactos ambientales que pueden generarse por la construcción de la línea de conexión, así como las medidas establecidas en el Pan de Manejo Ambiental para evitarlos, mitigarlos, corregirlos y compensarlos.

A continuación se presenta una relación de los capítulos que se incluyen en este documento:

Capítulo 1. Objetivos: Se presentan los objetivos generales y específicos del proyecto.

Capítulo 2. Generalidades: En este capítulo se presentan los antecedentes del proyecto, normatividad aplicable, alcances y la metodología que fue utilizada para la caracterización, la evaluación de impactos, zonificación de manejo y demás ítems solicitados por los Términos de
Referencia para la elaboración del Estudio de Impacto Ambiental – EIA en proyectos de sistemas de transmisión de energía eléctrica¹.

Capítulo 3. Descripción del proyecto: Se presenta la localización geográfica y político-administrativa del proyecto, las características técnicas en las diferentes fases con los respectivos diseños de factibilidad, cronograma, infraestructura existente, actividades realizadas en las fases, diseño del proyecto y demás ítems que brinden información relacionada con el proyecto.

Capítulo 4. Área de influencia: En este capítulo se define, identifica y delimita las áreas de influencias propuestas para cada medio (abiótico, biótico y socioeconómico) planteada en función de unidades de análisis.

Capítulo 5. Caracterización del área de influencia: En este capítulo se presenta información cualitativa y cuantitativa, tanto primaria como secundaria, que permite conocer las características del medio ambiente en el área de influencia del proyecto para cada uno de los medios (abiótico, biótico y socioeconómico). Además, con la información recolectada y procesada de esta primera fase, se identifican los servicios ecosistémicos de regulación, aprovisionamiento, soporte y culturales que los ecosistemas brindan en el área de influencia.

Capítulo 6. Zonificación ambiental: Se presenta la zonificación ambiental con base en la información de la caracterización del área de influencia, que permite determinar la sensibilidad ambiental del área en su condición sin proyecto, con base en el análisis de las condiciones del medio que indican susceptibilidad ante los fenómenos naturales y antrópicos.

Capítulo 7. Demanda, uso, aprovechamiento y/o afectación de recursos naturales: En este capítulo se presenta información detallada de los recursos naturales que demanda el proyecto durante la etapa constructiva.

Capítulo 8. Evaluación ambiental: Se identifican y valoran los impactos ambientales en dos escenarios, sin y con proyecto, con el fin de determinar cómo el proyecto modifica las

características del área de influencia. Además, se presenta la Evaluación Económica Ambiental donde se realiza una estimación del valor económico de los beneficios y costos ambientales que genera el proyecto.

Capítulo 9. Zonificación de manejo ambiental del proyecto: De acuerdo con los resultados de zonificación ambiental y evaluación de impactos, se identifica espacialmente la zonificación de manejo, en la cual se definen las áreas de exclusión, intervención con restricción o intervención sin restricciones.

Capítulo 10. Planes y Programas: En este capítulo se establecen los programas y medidas encaminadas a prevenir, mitigar, corregir y/o compensar para los medios abiótico, biótico y socioeconómico, considerando la afectación que se pueda generar durante la ejecución de las actividades propias del proyecto. Además se formulan medidas de seguimiento y monitoreo que garanticen el cumplimiento de las medidas de manejo ambiental.

Adicionalmente, se presenta el plan de gestión del riesgo donde se estructura el plan para prevención, atención y evaluación de eventos inesperados; siguiendo el esquema de análisis de riesgos identificando amenazas y vulnerabilidades.

2.3 METODOLOGÍA

A continuación se presentan las metodologías utilizadas para el adecuado desarrollo de los capítulos correspondientes al Estudio de Impacto Ambiental para la Línea de conexión subestación Nueva Colonia – Puerto Antioquia.

2.3.1 Descripción del proyecto

Se realiza una descripción detallada del proyecto, donde se ilustra su localización, diseño y características técnicas, además se indica el cronograma estimado, las actividades que se llevarán a cabo para cada fase, la infraestructura existente, los insumos necesarios, costos estimados, estructura organizacional planteada, así como el manejo y disposición de materiales y residuos peligrosos y no peligrosos que se generen.
2.3.2 Área de influencia

Para la delimitación del área de influencia se tuvo en cuenta la Guía para la definición, identificación y delimitación del área de influencia, expedida en julio de 2018 por la Autoridad Nacional de Licencias Ambientales, los Términos de Referencia para la elaboración de Estudios de Impacto Ambiental de sistemas de transmisión de energía eléctrica, además de la Metodología general para la Elaboración y Presentación de Estudios Ambientales.

Según lo anterior, el área de influencia se planteó en función de la determinación de aquellos componentes sobre los cuales se pueden manifestar los impactos ambientales significativos a causa de las diferentes actividades desarrolladas por el proyecto.

La delimitación del área de influencia del proyecto se llevó a cabo en tres fases, las cuales comprendieron de manera individual y por componente ambiental, una serie de pasos que llevaron de forma progresiva a la delimitación, según los impactos del proyecto y la extensión de los mismos. Las fases y pasos desarrollados se describen a continuación.

2.3.2.1 Fase 1. Delimitación preliminar del área de influencia

Esta fase fue desarrollada a partir de la revisión de información secundaria, elementos teóricos, planos y fotografías aéreas de la zona donde se desarrollará el proyecto, entre otros. El objetivo era delimitar, de manera preliminar, el área de influencia sobre la cual se realizó la caracterización de los medios abiótico, biótico y socioeconómico, teniendo en cuenta los componentes que agrupa cada medio. Para esto se tuvieron en cuenta las actividades constructivas y operativas del proyecto con el fin de visualizar posibles impactos y, de esta manera, trazar un área de estudio o área de influencia preliminar para cada medio, conformada por las áreas de influencia preliminares establecidas para cada componente o grupo de componentes.

2.3.2.2 Fase 2. Identificación de impactos ambientales

Esta fase fue ejecutada por los diferentes profesionales que participaron en la elaboración del Estudio de Impacto Ambiental. Una vez obtenida la caracterización del área de influencia preliminar se evaluó la magnitud y extensión de los impactos que se pueden generar con el
desarrollo de las actividades asociadas a la construcción de la línea para cada medio (abiótico, biótico y socioeconómico).

2.3.2.3 Fase 3. Delimitación definitiva del área de influencia

Con el fin de obtener el área de influencia definitiva para cada uno de los componentes y/o medios, se tuvieron en cuenta los resultados de la caracterización de los diferentes componentes ambientales y la extensión de los impactos causados sobre estos (Fase 2). De este modo se definió el área de influencia definitiva para cada medio (abiótico, biótico y socioeconómico) como aquella área en la que realmente se manifiestan los impactos ambientales significativos ocasionados por el desarrollo de las actividades del proyecto en mención.

2.3.3 Caracterización del área de influencia

2.3.3.1 Medio abiótico

2.3.3.1.1 Geología

Para el reconocimiento del área de estudio en cuanto al componente geológico a nivel regional y local, correspondiente a las unidades y estructuras geológicas, inicialmente se consultó la información disponible en las planchas geológicas y geomorfológicas del Servicio Geológico Colombiano (SGC) e imágenes satelitales de Google Earth.

Con base en la información secundaria, se ajustó la información de acuerdo con las observaciones realizadas en campo y la descripción de sondeos exploratorios directos y ensayos de laboratorio para la clasificación y determinación de parámetros de resistencia y clasificación del suelo.
2.3.3.1.2 Geomorfología

- **Unidades geomorfológicas**

Se realiza inicialmente una consulta de las unidades geomorfológicas regionales definidas en el área de estudio por la Universidad Nacional de Colombia y Universidad de Antioquia para el POT del municipio de Turbo\(^2\). Posteriormente mediante el reconocimiento de campo se realizaron los ajustes para determinar las unidades geomorfológicas locales, considerando las unidades geológicas locales (formaciones superficiales) definidas.

Los nombres y convenciones de las unidades geomorfológicas siguen los lineamientos del SGC en el documento “Propuesta metodológica sistemática para la generación de mapas geomorfológicos analíticos aplicados a la zonificación de amenaza por movimientos en masa escala 1:100.000 (2012)”, esta metodología destaca la importancia de la génesis de las geoformas y los procesos morfodinámicos de la zona de interés.

- **Procesos morfodinámicos**

Se basa en las evidencias observadas durante los recorridos de campo realizados en el mes de abril de 2019 y se consulta el inventario de eventos reportados en el Sistema de Información de Movimientos en Masa\(^3\) (SIMMA) y en el documento “Plan de contingencia frente a la primera temporada de lluvia 2018”\(^4\). Se analizan cambios en la dinámica de los drenajes, mediante la visualización de imágenes satelitales de Google Earth.

- **Amenazas geológicas**

Al momento de realizar la consulta de información, no se contaba con la formulación del POMCA del río León, que incluye casi en su totalidad el área de estudio, por esto se tomó información de los niveles de amenaza sísmica, diapirismo, inundación, movimiento en masa, y avenida torrencial, de informes del SGC, ANH y el municipio de Turbo. Debido a la escala de trabajo de los mapas realizados por el Servicio Geológico Colombiano, en algunos de estos se

\(^3\) SERVICIO GEOLÓGICO COLOMBIANO. Mapa nacional de amenaza por movimiento en masa. 2015

\(^4\) CORPOURABÁ. Plan de contingencia frente a la primera temporada de lluvia 2018. Apartadó, 2018
presentan niveles de amenaza que no corresponden con la probabilidad de ocurrencia de este tipo de eventos, acorde con el contexto geológico y geomorfológico, por lo cual se consultó el POMCA del río Turbo Currulao\(^5\) cuya parte sur es cercana al área de estudio y cuyas características geológicas, geomorfológicas y meteorológicas son similares.

Posteriormente CORPOURABÁ compartió el POMCA del Río León que cubre gran parte del área de estudio, pero que se encuentra en etapa de publicación, es decir en etapa de edición, por lo anterior, se presenta información correspondiente al POMCA del río Turbo – Currulao y algunas de las figuras son modificadas del POMCA del río León\(^6\) por la similitud en la información de ambos POMCAs.

2.3.3.1.3 Paisaje

- Unidades de paisaje

Las unidades de paisaje se determinaron a través de la metodología de Ian Mc. Harg\(^7\), la cual consiste en la superposición de mapas temáticos que permitan la agrupación de variables en unidades. Estos mapas son superpuestos para producir un mapa de síntesis ambiental de un área geográfica específica.

A continuación, se describen los elementos que componen cada capa:

- Espacios Geográficos: Se dividen en dos grandes clases: espacios intervenidos, que son aquellos donde el equilibrio natural ha sufrido modificaciones por la intervención del hombre y los paisajes no intervenidos, espacios donde la intervención antrópica es mínima.

- Geomorfología: Unidades geomorfológicas en el área de interés

- Cobertura: Se agruparon coberturas que presentan similitud en su patrón de forma. Los tres grupos de asociados fueron: Coberturas boscosas, coberturas intervenidas y coberturas no boscosas.

\(^6\) CORPOURABÁ. Ajuste del plan de ordenación y manejo de la cuenca del río León SZH (1201) localizado en el departamento de Antioquia en jurisdicción de la Corporación para el desarrollo sostenible del Urabá, (CORPOURABÁ). 2019.

La combinación de estas tres (3) capas, da como resultado final el mapa de unidades de paisaje.

- Sitios de interés paisajístico y percepción de las comunidades

En el área de influencia física no se presentaron sitios de interés paisajístico, por lo tanto se optó por definir con información secundaria lugares que son símbolo de importancia y utilidad para la comunidad ya que se encuentran asociados a actividades económicas, facilidades de desplazamiento y zonas de importancia ambiental a nivel local y regional.

- Integridad escénica o calidad del paisaje

Para evaluar la integridad escénica del paisaje se utilizó la metodología planteada en el libro Landscape Aesthetics A Handbook for Scenery Management, la cual permite evaluar la calidad del paisaje encontrado en el área de influencia del proyecto. Esta integridad escénica en su definición más pura, significa condición perfecta. Sin embargo, en la gestión de paisajes, los grados de integridad se definen desde inaceptablemente bajos hasta muy altos. La integridad también se puede usar para gestionar los atributos del carácter del paisaje: es decir, patrón vegetativo, forma, línea, color, textura y escala; y otros sentidos estéticos, como el sonido, la dureza, el olfato y el gusto.

A continuación, se describen los niveles de integridad escénica o calidad del paisaje:

- Muy Alto (Inalterado) Preservación

La integridad escénica MUY ALTA se refiere a paisajes donde el carácter de paisaje valioso está intacto con desviaciones mínimas o nulas. El carácter de paisaje existente y el sentido de lugar se expresan al nivel más alto posible.

- Alto (parece inalterado) Retención

La integridad escénica ALTA se refiere a los paisajes en los que el carácter de paisaje valioso parece intacto. Las desviaciones pueden estar presentes, pero deben repetir la forma, línea, textura, línea, color, etc. esta integridad escénica se refiere a un estado de conservación adecuado que mantiene la estructura del paisaje existente.

color, textura y patrón comunes al carácter del paisaje tan completamente y a una escala tal que no sean evidentes.

- Moderada (Ligeramente alterada) Retención parcial

La integridad escénica MODERADA se refiere a los paisajes en los que el carácter del paisaje valioso "parece ligeramente alterado". Las desviaciones notables deben permanecer visualmente subordinadas al carácter de paisaje que se está viendo.

- Bajo (Moderadamente alterado) Modificado

La integridad escénica BAJA se refiere a los paisajes en los que el carácter de paisaje valioso "parece moderadamente alterado". Las desviaciones comienzan a dominar el personaje de paisaje valioso que se está viendo, pero toman prestados atributos valorados como tamaño, forma, efecto de borde y patrón de aperturas naturales, cambios de tipo vegetativo o estilos arquitectónicos fuera del paisaje que se está viendo. No solo deberían aparecer como personajes valiosos fuera del paisaje que se visualiza, sino que son compatibles o complementarios para el personaje que se encuentra dentro.

- Muy bajo (Muy alterado) Modificación máxima

La integridad escénica MUY BAJA se refiere a los paisajes en los que el carácter del paisaje valioso "parece muy alterado". Las desviaciones pueden dominar fuertemente el personaje de paisaje valioso. No pueden tomar prestados atributos valiosos tales como tamaño, forma, efecto de borde y patrón de aperturas naturales, cambios de tipo vegetativo o estilos arquitectónicos dentro o fuera del paisaje visto. Sin embargo, las desviaciones se deben formar y mezclar con el terreno natural (accidentes geográficos) para que elementos tales como bordes no naturales, caminos, rellenos y estructuras no dominen la composición.

- Inaceptablemente baja (Extremadamente alterada)

La integridad escénica INACEPTABLEMENTE BAJA se refiere a paisajes en los que el personaje de paisaje valioso que se está visualizando aparece extremadamente alterado. Las desviaciones son extremadamente dominantes y toman prestada poca o ninguna forma, línea,
color, textura, patrón o escala del carácter del paisaje. Los paisajes en este nivel de integridad necesitan rehabilitación.

Para la descripción de los niveles de integridad, la metodología plantea una matriz que permite en base a 3 criterios valorar la integridad escénica de las unidades de paisaje. A continuación, en la Tabla 2.2 se describe la matriz de selección.

Tabla 2.2 Criterios para la valoración de los niveles de integridad escénica.

<table>
<thead>
<tr>
<th>Criterios</th>
<th>(VH) Muy Alto</th>
<th>(H) Alto</th>
<th>(M) Modera</th>
<th>(L) Bajo</th>
<th>(VL) Muy Bajo</th>
<th>(UL) Inaceptablemente bajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paisaje de dominancia Carácter vs. desviación</td>
<td>Paisaje Personaje</td>
<td>Paisaje Personaje</td>
<td>Paisaje Personaje</td>
<td>Desviación</td>
<td>Desviación</td>
<td>Desviación</td>
</tr>
<tr>
<td>Grado de desviación del carácter del paisaje</td>
<td>Ninguna</td>
<td>No Evidente</td>
<td>Evidente pero no dominante</td>
<td>Dominante</td>
<td>Muy Dominante</td>
<td>Extremadamente dominante</td>
</tr>
<tr>
<td>Intacto del carácter del paisaje</td>
<td>Carácter de paisaje completamente expresado</td>
<td>Carácter del paisaje expresado en gran medida</td>
<td>Ligeramente alterado y expresión de caracteres moderada</td>
<td>Alterada y baja expresión de caracteres</td>
<td>Muy alterado y muy baja expresión de caracteres</td>
<td>Extremadamente alterado</td>
</tr>
</tbody>
</table>

- **Análisis de visibilidad**

El análisis de la visibilidad, se refiere a la claridad o grado de percepción óptica que tienen los observadores frente al paisaje en el área de influencia, en donde se compone de dos partes, una corresponde a los valores humanos que se refieren a la relación de importancia de la población de los paisajes que presencian y la sensibilidad de éstos con respecto a la distancia horizontal de los observadores que transitan por los senderos y vías.

La visibilidad parte de una percepción subjetiva y se puede clasificar como visibilidad baja, media o alta según el criterio del observador en relación a las características y cualidades de las unidades del paisaje observado. De acuerdo con lo establecido en la metodología de Cuencas

visuales la cual propone un método semiautomático de Modelo Digital del Terreno (MDT) en el cual a través de herramientas SIG se introduce la topografía del área de influencia del proyecto y se seleccionan puntos de observación ubicados en sitios transitados frecuentemente y que enfocan el área de influencia del proyecto. El siguiente paso evalúa la distancia entre el punto de observación y el sitio de interés observado, la metodología Landscape Aesthetics A Handbook for Scenery Management, se definen las escalas visuales así (Figura 2.1):

![Figura 2.1 Escala de análisis de visibilidad paisajística](image-url)

2.3.3.1.4 Suelos y uso de la tierra

- Capacidad del suelo y uso potencial

La clasificación del suelo por capacidad de uso y su uso potencial, se definió a partir del Método de Clasificación de Capacidad de Uso del Departamento de Agricultura de Estados Unidos adaptado para Colombia a través de la Metodología para la Clasificación de las Tierras por su Capacidad de Uso. La clasificación de capacidad de uso del suelo permite agrupar suelos que presentan el mismo nivel o grado relativo de limitación y/o riesgo de degradación. La estructura del sistema de clasificación de las tierras por su capacidad de uso se compone de ocho clases que se agrupan en tres grandes grupos:

12 United States Department of Agriculture USDA. Natural resources conservation services NRCS. Keys to soil taxonomy tenth edition, 2006
- Grupo de tierras con capacidad para ser utilizadas en agricultura y ganadería tecnificada de tipo intensivo y semi intensivo (clases 1 a 4): Las tierras de las clases 1 a 4 tienen capacidad para ser utilizadas en agricultura y ganadería en sistemas de producción cuya intensidad de manejo y variedad de especies vegetales varía desde muy intensiva en la clase 1 hasta muy restringida en la clase 4 estas pueden ser usadas en agroforestería.

- Grupo de tierras que pueden ser utilizadas en forma restringida, en actividades agrícolas, ganaderas, agroforestales y/o forestales (clases 5-6-7): Las tierras de la clase 5 no son aptas para agricultura convencional por limitaciones diferentes a erosión, por ejemplo, la ocurrencia de inundaciones prolongadas y la presencia de pedregosidad superficial. Con la implementación de sistemas de cultivo y prácticas de manejo especiales, en estas tierras se podrían adelantar actividades agrícolas y ganaderas con rendimientos aceptables. En términos generales, las tierras de clases 6 y 7 no tienen capacidad para agricultura, excepto para cultivos específicos semi perennes o perennes, semi densos y densos y sistemas agroforestales y forestales, debido a severas limitaciones como pendientes escarpadas; eventualmente las de menor pendiente (clase 6) podrían utilizarse en ganadería. Cualquiera de estas clases de uso requiere intensas prácticas de manejo y de conservación.

- Tierras que deben ser utilizadas sólo en preservación, conservación y ecoturismo (clase 8): Las tierras de la clase 8 no tienen capacidad para adelantar actividades agropecuarias ni forestales de producción; deben ser destinadas o incluidas en planes y programas de gobierno, orientados a la preservación y conservación de los recursos naturales, como sistemas de parques nacionales, reservas forestales y control de la degradación.

Adicionalmente, se tienen las subclases del sistema de esta clasificación, que especifica en las clases 2 a la 8, uno o más factores limitantes generales y específicos con su grado de limitación. A continuación, se presentan las definiciones de dichas limitantes.

- Subclase por limitación de pendiente (p): se refiere al grado de inclinación de la pendiente expresada en porcentaje.

- Subclase por limitación de erosión (e): esta subclase la conforman los suelos que se encuentran afectados por pérdida acelerada del suelo producto de la mala utilización y
prácticas de manejo inadecuadas o por fenómenos de remoción o movimientos en masa. En esta subclase sólo se tienen en cuenta los procesos erosivos actuales y los movimientos en masa.

- Subclase por limitación de humedad (h): está formada por los suelos sobresaturados con agua, bien sea por exceso de precipitaciones, inundaciones generadas por el desbordamiento de las corrientes de agua o encharcamiento debido al escurrimiento de aguas superficiales.

- Subclase por limitación de suelo (s): se clasifica de acuerdo a las limitaciones físicas y químicas, que dificultan e impiden el libre desarrollo de las raíces de las plantas y las prácticas de labranza del suelo.

- **Uso actual**

El uso de los suelos en el área de influencia se determinó a partir de las visitas realizadas en campo y mediante la agrupación de coberturas con funcionalidades similares, permitiendo la identificación de áreas que presentan los mismos patrones de explotación y uso de los recursos naturales asociados al suelo en términos de las categorías del uso del suelo establecidas en la metodología de planteada por el IGAC\(^\text{14}\).

- **Conflictos de uso del suelo**

Para evaluar los conflictos del uso del suelo, se elaboró una matriz de decisión que permite confrontar las variables, uso potencial del suelo vs el uso actual. Se adecuó cada clase de uso actual y cobertura en término de las clases de vocación de uso principal con el fin de comparar niveles similares dentro de la matriz, y el uso potencial teniendo en cuenta la clase agrológica para cada tipo de suelo.

A continuación, en la Tabla 2.3 se presenta la codificación utilizada para cada nivel de conflicto.

\(^{14}\) Ibid 44p.
Tabla 2.3 Codificación de los grados de conflictos de uso del suelo

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Tipo de Conflicto</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tierras sin conflictos de uso o uso adecuado</td>
</tr>
<tr>
<td>S1</td>
<td>Conflicto por subutilización ligera</td>
</tr>
<tr>
<td>S2</td>
<td>Conflicto por subutilización moderada</td>
</tr>
<tr>
<td>S3</td>
<td>Conflicto por subutilización severa</td>
</tr>
<tr>
<td>O1</td>
<td>Conflicto por sobreutilización ligera</td>
</tr>
<tr>
<td>O2</td>
<td>Conflicto por sobreutilización moderada</td>
</tr>
<tr>
<td>O3</td>
<td>Conflicto por sobreutilización severa</td>
</tr>
</tbody>
</table>

Fuente: IGAC, CORPOICA 2002

Tierras sin Conflicto de Uso o uso adecuado (A): son aquellas tierras donde hay correspondencia entre la vocación de uso y el uso actual, o en su defecto, se encuentra en usos que no ocasionen deterioro del suelo y el medio ambiente.

Conflicto por Subutilización: se denomina en conflicto por subutilización a los suelos donde el uso dominante presenta un nivel inferior de intensidad de uso en comparación con la capacidad productiva del mismo de acuerdo a las características agrológicas, lo cual afecta los niveles productivos del mismo, sin que eso ocasiones pérdida del recurso.

- Subutilización ligera (S1): suelo cuyo uso principal está muy cercano al uso compatible, pero que se ha evaluado de menor intensidad.

- Subutilización moderada (S2): suelos cuyo uso actual está por debajo, dos niveles de la capacidad productiva definida.

- Subutilización severa (S3): suelos cuyo uso principal está por debajo tres o más niveles de su capacidad de uso.

• Conflicto por sobreutilización: esta categoría se asigna a aquellos suelos donde el uso actual dominante en comparación con la vocación de uso, de acuerdo con las clases agrológicas, es más intenso.

- Sobreutilización ligera (O1): suelos cuyo uso actual se encuentra muy cercano a la vocación de uso.

- Sobreutilización moderada (O2): suelos cuyo uso actual se encuentra por encima dos niveles, con respecto a la vocación de uso recomendada. Es común encontrar en esta categoría tierras con signos de deterioro de los recursos naturales y el suelo, en especial procesos erosivos activos.

- Sobreutilización severa (O3): suelos cuyo uso actual se encuentra por encima tres niveles, con respecto a la vocación de uso recomendada. Son suelos con signos de degradación avanzada de los recursos como procesos erosivos severos y baja productividad de las tierras.

2.3.3.1.5 Hidrología

Para determinar la información y el análisis hidrológico del área de influencia del proyecto se utilizó la información suministrada por el Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, de las estaciones y parámetros que se listan en las Tabla 2.4 y Tabla 2.5.

Tabla 2.4 Estaciones de Precipitación en la zona del proyecto

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Código</th>
<th>Coordenadas</th>
<th>Corriente</th>
<th>Municipio</th>
<th>Instalación</th>
<th>Suspensión</th>
<th>% faltantes</th>
<th>Precipitación media</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Lorena</td>
<td>1201006</td>
<td>7.86 -76.690</td>
<td>Zungo</td>
<td>Apartado</td>
<td>1976</td>
<td>2017</td>
<td>0.6</td>
<td>2570.92</td>
</tr>
<tr>
<td>El Casco</td>
<td>1201007</td>
<td>7.88 -76.650</td>
<td>Churido</td>
<td>Apartado</td>
<td>1977</td>
<td>2017</td>
<td>1.45</td>
<td>2538.44</td>
</tr>
<tr>
<td>Prado mar</td>
<td>1201110</td>
<td>7.99 -76.640</td>
<td>Caño Viejo</td>
<td>Turbo</td>
<td>1977</td>
<td>2017</td>
<td>0.6</td>
<td>2251.59</td>
</tr>
<tr>
<td>Sta Martha</td>
<td>1201012</td>
<td>7.92 -76.650</td>
<td>Riogrande</td>
<td>Turbo</td>
<td>1977</td>
<td>2017</td>
<td>0.4</td>
<td>2678.66</td>
</tr>
<tr>
<td>Eupol</td>
<td>1201010</td>
<td>7.95 -76.620</td>
<td>Riogrande</td>
<td>Turbo</td>
<td>1977</td>
<td>2017</td>
<td>0.6</td>
<td>2699.89</td>
</tr>
<tr>
<td>Uniban</td>
<td>1201502</td>
<td>7.82 -76.611</td>
<td>Zungo</td>
<td>Apartado</td>
<td>1977</td>
<td>2017</td>
<td>0.4</td>
<td>2719.52</td>
</tr>
<tr>
<td>El Cielo</td>
<td>1302002</td>
<td>7.91 -76.417</td>
<td>Qda Teodora</td>
<td>Tierralta</td>
<td>1977</td>
<td>2002</td>
<td>0</td>
<td>1396.96</td>
</tr>
</tbody>
</table>

Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019

Tabla 2.5 Estación de caudal usada para la caracterización del régimen hidrológico.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Código</th>
<th>Coordenadas</th>
<th>Corriente</th>
<th>Municipio</th>
<th>Instalación</th>
<th>Suspensión</th>
<th>% faltantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riogrande</td>
<td>12017040</td>
<td>7.930 -76.620</td>
<td>Riogrande</td>
<td>Turbo</td>
<td>1978</td>
<td>2015</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019
Para la estimación de los caudales hasta los sitios de intervención se contó con la información de la estación Riogrande (12017040) sobre el río Riogrande.

Para las corrientes Sin Nombre #1, Sin Nombre #2 y Sin Nombre #3, se estimaron los caudales a partir de la relación área – precipitación – evaporación entre el sitio de la estación y el sitio de intervención de las corrientes:

$$Q_i = \frac{(P - E) \times A}{(P_c - E_c) \times A_c} \times Q_{E,i}$$

Donde:
- Q_i: Caudal medio mensual multianual del mes i del sitio de intervención
- P: Precipitación media multianual en el sitio de intervención
- E: Evaporación media multianual en el sitio de intervención
- A: Área del sitio de intervención
- P_c: Precipitación media multianual en estación Riogrande
- E_c: Evaporación media multianual en estación Riogrande
- A_c: Área de la estación Riogrande
- $Q_{E,i}$: Caudal medio mensual multianual del mes i en la estación Riogrande.

Para el puente sobre el río Riogrande se estimaron los caudales a partir de la relación área entre el sitio de la estación y el sitio donde se plantea construir el puente sobre el Riogrande:

$$Q_i = \frac{A}{A_c} \times Q_{E,i}$$

Donde:
- Q_i: Caudal medio mensual multianual del mes i del sitio del puente
- A: Área del sitio del puente
- A_c: Área de la estación Riogrande
- $Q_{E,i}$: Caudal medio mensual multianual del mes i en la estación Riogrande.
• Caudales Máximos

El cálculo de los caudales máximos instantáneos se realizó por medio de dos metodologías, la primera será por la metodología de ajuste probabilístico con trasposición de caudales desde la estación medidora de este parámetro hasta el sitio de interés y la segunda metodología se basa en la prueba de homogeneidad regional16.

Para efectos de las estimaciones de la metodología de ajuste probabilístico con trasposición de caudales, en primer término, la hoya hidrográfica del puente sobre el Río Riogrande, se ha dividido en dos subcuencas, una hoya que llega hasta la estación limnográfica Riogrande y la otra que llega hasta el punto de estudio.

La metodología consiste en un ajuste probabilístico y la trasposición de caudales máximos instantáneos de la estación limnográfica Riogrande al sitio de proyecto.

Los lineamientos básicos de las metodologías se explican detalladamente en las referencias bibliográficas17 18 19 20 21.

La segunda metodología de la prueba de homogeneidad regional se basa en un análisis hidrológico de frecuencias de crecientes que abarca prácticamente la totalidad de la zona andina de Colombia y utilizó toda la información sobre caudales máximos disponible en el Banco de Datos del Instituto.

La prueba de homogeneidad regional se explica detalladamente en el documento del Ministerio de Agricultura Instituto Colombiano de Hidrología22.

• Frecuencia de caudales máximos instantáneos del río Riogrande en el sitio de ubicación del puente

A la serie de caudales máximos instantáneos a nivel anual multianual, se le calcularon sus características estadísticas de media, desviación típica y coeficiente de asimetría.

Posteriormente, los datos históricos de esta variable hidrológica aleatoria fueron ajustados a distribuciones probabilísticas conocidas, y se calcularon los valores de esta variable para diferentes periodos de retorno.

Para ello, tales datos históricos se ajustaron a las distribuciones probabilísticas Normal, Gumbel, Pearson Tipo III, Log – Pearson Tipo III, Log – Normal y EV3, a través de métodos estadísticos convencionales.

Para los estudios estadísticos, se siguió la metodología de Chow, en la que expresa que los análisis de frecuencias de variables hidrológicas pueden llevarse a cabo a través de ecuaciones del tipo:

\[X_T = \mu + K_T\sigma \]

En donde:

\(X_T \) es la magnitud del evento que tiene un período de retorno \(T \).

\(\mu \) es el valor medio de la muestra.

\(\sigma \) es la desviación típica de la muestra.

\(K_T \) es el factor de frecuencia, dependiente de la ley de probabilidades que se seleccione.

28 Chow V.T., Maidment D.R., Mays L.W, , Ibid.
- Caudales Máximos instantáneos Rio Grande en el sitio del proyecto Probabilístico y transposición de caudales

De acuerdo a las frecuencias de caudales máximos instantáneos anuales en el sitio de la estación limnográfica Rio Grande, obtenidos mediante la distribución Log - Pearson ya que es la que presenta los caudales más críticos, se utilizó como método de cálculo una transposición de caudales desde la estación hasta el sitio de interés.

Este tipo de método es muy utilizado cuando no se poseen datos históricos sobre una cuenca, pero solo si se poseen los datos sobre una cuenca similar, o sobre la misma corriente o las cuencas son hidrológicamente homogéneas (tamaño, zona, precipitación anual, vegetación, pendientes, etc.) La expresión utilizada se presenta a continuación:

\[
Q_{sp} = \frac{A_{sp}}{A_{Estación}} \times Q_{Estación}
\]

En donde:

\(Q_{sp}\): Caudal Máximo Instantáneo en el sitio de proyecto, m³/s.

\(A_{sp}\): Área de Drenaje Aferente hasta el sitio de proyecto igual a 131.96 km².

\(Q_{Estación}\): Caudal Máximo Instantáneo en la estación limnográfica Rio Grande, m³/s.

\(A_{Estación}\): Área de Drenaje Aferente hasta la estación limnográfica Rio Grande igual a 60.83 km².

- Caudales máximos instantáneos del río Rio Grande en el sitio del proyecto – Homogeneidad Regional

Para realizar la prueba de homogeneidad regional, el país fue dividido en 21 regiones, basada en los ríos principales cuyas cuencas hidrográficas conforman cada región. La región perteneciente al río Rio Grande, es la región número 13, nombrada León Mulatos.

A cada región se le hizo un análisis hidrológico de frecuencia de crecientes con ayuda de los registros de las estaciones hidrométricas, extrayendo el valor del caudal máximo anual y
deducción para la serie anual de caudales máximos de su valor medio \(\mu \) y su desviación estándar \(\sigma \).

Partiendo de los registros obtenidos, se hizo la selección de periodos homogéneos para análisis de frecuencia en cada una de las regiones analizadas, de tal manera que las series anuales de caudales máximos de las estaciones de la región correspondan a un mismo lapso.

Mediante la sistematización de la prueba de homogeneidad regional fue posible aplicarla de manera iterativa al grupo de estaciones seleccionadas para cada región geográfica, hasta que en dos iteraciones sucesivas no ocurriera el rechazo o exclusión de ninguna de las estaciones del grupo.

Este procedimiento automatizado de la prueba de homogeneidad regional fue llevado a cabo en una de las regiones del país con resultados muy satisfactorios desde el punto de vista de operación del programa de computador desarrollado para tal efecto.

Para la obtención de las relaciones de frecuencia regionales por el método de la Creciente Índice descrito por Kite (“Frecuency and Risk Analyses in Hydrology; Water Resources Publications, 1977”) consiste en hallar una relación regional

\[Q_T = Q_T / Q_i \]

Entre el caudal máximo \(Q_T \) con un periodo de retorno \(T \) y el caudal índice \(Q_i \).

La otra base del método mencionado es determinar la relación que existe entre \(Q_i \) y algunas de las características de las cuencas de drenaje, por ejemplo el área, la pendiente o la longitud mediante análisis de recesión múltiple.

De tal manera que, dado un sitio específico sobre una corriente dentro de una región hidrográfica, en donde las características de su cuenca pueden establecerse, es posible estimar el caudal de creciente para un periodo de retorno \(T \), así:

\[Q_T = Q_t \times Q_i \]
Como resultado del análisis de frecuencias regional se establecieron las regiones QT que aparecen en la tabla 2 de la referencia bibliográfica (7) en las diversas regiones estudiadas, las cuales conforman para cada región, la curva de frecuencia regional respectiva.

Para la región No. 13 León Mulatos, donde se encuentra el río León se tiene un Qi extraído de la regencia bibliográfica (7) igual a:

\[Q_i = 32.14 A^{0.27} \]

Donde

A: Área aferente al proyecto o a la estación

Con el fin de hallar el caudal QT, se tienen los siguientes periodos de ocurrencia para la región No. 13 León Mulatos obtenidos de la referencia bibliográfica (7):

<table>
<thead>
<tr>
<th>REGIÓN</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.912</td>
<td>1.384</td>
<td>1.698</td>
<td>1.999</td>
<td>2.387</td>
<td>2.678</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Agricultura Instituto Colombiano de Hidrología, Meteorología y Adecuación de Tierras, HIMAT, modificada por Aqua &Terra Consultores Asociados S.A.S, 2019.

- **ESTUDIO HIDROLÓGICO DE LAS CUENCAS MENORES**

Además de la cuenca del río Riogrande, es necesario intervenir varias corrientes menores a lo largo del corredor de la vía. Para estimar los caudales de estas corrientes, se utilizó la metodología del método racional, debido a que el tamaño de las cuencas que drenan a estas corrientes son menores a 8 km². Para llevar a cabo el método racional para la estimación de caudales, es necesario delimitar las cuencas a intervenir, estimar la intensidad de la lluvia de cada una y determinar las condiciones del suelo al interior de estas.

- Caudales Máximos para las corrientes menores a intervenir

Tiempo de concentración para las corrientes menores a intervenir
La duración de la lluvia se hace igual al tiempo de concentración de la cuenca, puesto que es para esta duración cuando la totalidad del área de la cuenca está aportando al proceso de escorrentía, por esto, es de esperarse que se presenten los caudales máximos. En la literatura existen múltiples expresiones para el cálculo del tiempo de concentración, entre ellas las propuestas por: Témez, William, Kirpich, Johnstone y Cross, California Couverts Practice, Giandotti, S.C.S, Ventura-Heras. Sus fundamentos teóricos pueden ser revisados en Campo y Múnera (1997) 29. Debido a las diferentes expresiones para el cálculo del tiempo de concentración, existe una fuerte variabilidad en los resultados de una a otra, lo cual hace necesario escoger apropiadamente el tiempo de concentración y descartar aquellos métodos que no se ajusten a las condiciones morfométricas locales de la cuenca.

Las expresiones utilizadas para estimar este parámetro fueron las siguientes:

- Témez (1978)
 \[T_c = 0.3 \left(\frac{L}{S_o^{0.25}} \right)^{0.75} \]

 Tc: tiempo de concentración en horas.
 L: longitud del cauce principal en kilómetros.
 S_o: diferencia de cotas entre los puntos extremos de la corriente sobre L en%.

- Williams (1922)
 \[T_c = \frac{LA^{0.4}}{DS_o^{0.2}} \]

 Tc: tiempo de concentración, en horas.
 A: área en millas cuadradas.
 L: distancia en línea recta desde el sitio de interés al punto más alto de la cuenca en millas.
 S_o: diferencia de cotas entre los puntos extremos de la cuenca dividida por L, en %.

D: diámetro de una cuenca circular, con área A, en millas.

• Kirpich (1990) \[T_c = 0.0078 \left(\frac{L}{\sqrt{S_0}} \right)^{0.77} \]

Tc: tiempo de concentración, en horas.

L: longitud desde la estación de aforo hasta la divisoria, siguiendo el cauce principal, en kilómetros.

So: diferencia de cotas entre los puntos extremos de la corriente sobre L en m/m.

• Kirpich2 (1990) \[T_c = 0.066 \left(\frac{L}{\sqrt{S_0}} \right)^{0.77} \]

Tc: tiempo de concentración, en horas.

L: longitud desde la estación de aforo hasta la divisoria, siguiendo el cauce principal, en kilómetros.

So: diferencia de cotas entre los puntos extremos de la corriente sobre L en m/m.

• Giandiotti

\[T_c = \frac{4 \sqrt{A} + 1.5L}{25.3\sqrt{LS_o}} \]

Tc: Tiempo de concentración en horas.

A: área en millas cuadradas.

L: distancia desde el sitio de interés al punto en el cual la corriente principal corta la divisoria en km.

So: diferencia de cotas entre los puntos extremos de la corriente sobre L en m/m.

Intensidad de diseño
Se asume para la estimación de eventos hidrológicos de determinada magnitud en la cuenca, que la ocurrencia del caudal de diseño tiene una frecuencia igual a la de la tormenta de diseño. Para determinar la intensidad de lluvia se utilizan las curvas IDF (Intensidad-Duración-Frecuencia), que relacionan su duración con la intensidad asociada a diferentes periodos de retorno.

La intensidad de diseño para la cuenca de interés, se determinó a partir de los datos de precipitación máxima en 24 horas de las estaciones con influencia en la cuenca de las corrientes menores, las cuales son la estación Eupol, Uniban, Santa Martha, Casco, Prado Mar y la estación La Lorena (Vargas y Díaz - Granados, 1998). Una vez obtenidas las IDF de cada una de las estaciones se procede a estimar la influencia de cada una de estas a través de polígonos de Thiessen para luego obtener la intensidad de la lluvia en la cuenca de estudio.

Determinación del coeficiente de escorrentía

El cálculo del coeficiente de escorrentía se ponderará, según los siguientes parámetros:

- Tipo de suelo
- Pendiente del terreno
- Tipo de cobertura vegetal, en mayor parte pastizales.

Caudales Máximos estimados por el método racional

El estimativo del caudal máximo para una cuenca, se obtiene según este método mediante la siguiente expresión:

\[Q = \frac{C \times i \times A}{3.6} \]

\(Q \) caudal máximo de crecientes (m3/s)

30 VARGAS, Rodrigo y DÍAZ-GRANADOS, Mario., Curvas Sintéticas de Intensidad-Duración-Frecuencia para Colombia, Departamento de Ingeniería Civil, Universidad de Los Andes, Julio 1997.
I Intensidad de la lluvia para diferentes períodos de retorno

A Área de la cuenca (km2)

C coeficiente de escorrentía (adimensional).

- Caudales mínimos

Para la estimación de los caudales mínimos del río Riogrande, en el sector donde se plantea el puente y la corrientes sin Nombre #1, sin Nombre #2 y sin Nombre #3, las cuales son intervenidas por la vía, se procedió a obtener los caudales mínimos anuales de cada una de las series mensuales de las corrientes y a partir de estos valores se obtienen los caudales mínimos para diferentes periodos de retorno en cada uno de los sitios de intervención.

Para el cálculo de caudales mínimos para diferentes periodos de retorno se utiliza la ecuación presentada por Chow et al. (1994), la cual se indica a continuación:

\[Q_{Tr} = \mu_{Q_{min}} + K_{Tr} \sigma_{Q_{min}} \]

Donde \(Q_{Tr} \) es el caudal mínimo para un período de retorno \(Tr \), y \(K_{Tr} \) es un factor de frecuencia que depende de la función de distribución de probabilidad valores extremos elegida y del período de retorno, \(\mu_{Q_{min}} \) y \(\sigma_{Q_{min}} \) son la media y la desviación estándar de los caudales mínimos anuales.

- Temperatura media anual

Con el fin de conocer la distribución espacial de la temperatura media multianual en toda la zona de estudio, se construyó el mapa de temperatura media multianual a partir de relación encontrada por Chaves y Jaramillo para la Región Andina Colombiana.

\[T = 29.42 - 0.0061 \times H \]

Donde.

T. temperatura media multianual en °C

H. cota del terreno en msnm

• Balance hídrico de Largo plazo

En la estimación de los caudales medios se hace uso del balance hidrológico a largo plazo, el cual se encuentra implementado en el programa HidroSIG 3.1, desarrollado en el Posgrado de Aprovechamiento de Recursos de la Universidad Nacional.

El balance hidrológico se realiza en un volumen de control por medio de las ecuaciones de conservación de masa, para nuestro caso dicho volumen es el que comprende las columnas de agua y suelo comprendidas entre la divisoria de la cuenca, el borde superior de la atmósfera y un estrato impermeable en el fondo del suelo, donde las variables que intervienen en el proceso son: El Flujo de humedad en la atmósfera (F), Precipitación (P), Evaporación (E), Escorrentía directa (R), almacenamiento de agua en la atmósfera (W) y almacenamiento de agua en el suelo (S), ver Figura 2.2.

En la atmósfera el balance hídrico en la atmósfera y en el suelo están dados por las expresiones (Ecuación 2.1 y Ecuación 2.2), respectivamente.
\[F + E - P = \frac{dW}{dt} \]

Ecuación 2.1
Balance hídrico en la atmósfera

\[P - E - R = \frac{dS}{dt} \]

Ecuación 2.2
Balance hídrico del suelo

Si combinamos ambas expresiones, se obtiene la Ecuación 2.3 para el balance hídrico en todo el volumen de control:

\[F - R = \frac{d(W + S)}{dt} \]

Ecuación 2.3
Balance hídrico en el volumen de control

Considerando un balance a largo plazo (del orden de años), se tiene que los cambios en el almacenamiento de agua en la atmósfera (W) y en el almacenamiento de agua en el suelo (S) son despreciables, por tanto, de la Ecuación 2.2, se puede decir que el influjo atmosférico debe ser igual al promedio de largo plazo de la escorrenitia, es decir \(F = R \). Así, podemos expresar el balance hídrico a largo plazo como se muestra en la Ecuación 2.4.

\[R = P - E \]

Ecuación 2.4
Balance hídrico a largo plazo

Siendo las variables \(R, P \) y \(E \) promedios tomados sobre un tiempo largo y por unidad de área.

Para una cuenca determinada la Ecuación 2.4 se aplica en cada punto interior de ésta, en nuestro caso, como se está trabajando con un MDT tipo Raster. Así se obtiene en cada celda la columna de agua que ésta aporta a la escorrentía superficial. Finalmente, el caudal medio se obtiene sumando todos estos aportes de las celdas a la escorrentía superficial.
• Índice de aridez

Es una característica cualitativa del clima, que permite medir el grado de suficiencia o insuficiencia de la precipitación para el sostenimiento de los ecosistemas de una región, identifica áreas deficitarias o de excedentes de agua, calculadas a partir del balance hídrico superficial. Integra el conjunto de indicadores definidos en el ENA 2010\(^{33}\).

Se calcula empleando la siguiente ecuación:

\[
IA = \frac{(ETP - ETR)}{ETP}
\]

Ecuación 2.5 Índice de aridez

Donde:

Ia. Índice de aridez (adimensional)

ETP. Evapotranspiración potencial (mm)

ETR. Evapotranspiración real (mm)

• Índice de retención y regulación hídrica (IRH)

Este índice mide la capacidad de retención de humedad de las cuencas con base en la distribución de las eres de frecuencia acumuladas de los caudales diarios. Este índice se mueve en el rango entre 0 y 1, siendo los valores más bajos los que se interpretan como de menor regulación.

El cálculo del indicador se realiza empleando la siguiente ecuación

\[
IRH = \frac{V_p}{V_t}
\]

Ecuación 2.6 Índice de retención y regulación hídrica

Donde,

IRH. Índice de retención y regulación hídrica

Vp. Volumen representado por el área que se encuentra por debajo de la línea de caudal medio en la curva de duración de caudales diarios.

Vt. Volumen total representado por el área bajo la curva de duración de caudales diarios.

Es un indicador dimensional que varía entre 0 y 1. Los valores se agrupan para tener una descripción cualitativa, desde muy alta capacidad de retención y regulación de humedad hasta muy baja.

2.3.3.1.6 Calidad del agua

Para evaluar la calidad del agua superficial en el área de estudio, se tomó como información base el monitoreo realizado en cuatro puntos (4), ubicados en el municipio de Apartadó, Departamento Antioquia por el laboratorio AQUALAB CONSULTING S.A.S. Los puntos se presentan en la Tabla 2.5 y Figura 2.1.

Tabla 2.7 Puntos de monitoreo de calidad del agua

<table>
<thead>
<tr>
<th>Numero de muestra</th>
<th>Punto de muestreo</th>
<th>Coordenadas planas origen Oeste</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO1904419,001</td>
<td>CAS HB 1</td>
<td>1368890,93, 1038448,69</td>
</tr>
</tbody>
</table>

Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019

Figura 2.3 Puntos de monitoreo de calidad del agua

Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019
La toma de muestras y mediciones en campo se realizaron el 07 de Mayo del 2019 sobre el área de influencia del proyecto.

Para cada punto monitoreado se midieron algunas variables in situ y se colectaron muestras de agua para analizar en laboratorio debidamente certificado por el IDEAM. A continuación se describe la metodología empleada para la caracterización física, química y bacteriológica.

- **Análisis in situ**

Durante el monitoreo se recolectaron muestras de agua superficial, realizándose por medio de un muestreo simple registrándose los parámetros In Situ: pH, Temperatura, Oxígeno Disuelto y Conductividad.

Los equipos de campo que se emplearon en el presente muestreo fueron los siguientes:

- Multiparámetro HACH ENVI-OPE-93 (Sonda 9004 – 9002 – 9015)

Las mediciones de campo se hicieron conforme lo establecido en los siguientes procedimientos e instructivos internos de SGS, avalados por el IDEAM

- EHS-OPE-P-02 Procedimiento para toma de muestras de agua
- EHS-OPE-P-21 Procedimiento determinación pH y Temperatura
- EHS-OPE-P-17 Procedimiento determinación de Conductividad
- EHS-OPE-P-18 Procedimiento determinación de Oxígeno Disuelto

Tabla 2.8 Tipo de recipiente, preservación y método de medición de las muestras.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Recipiente</th>
<th>Preservación</th>
<th>Método</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH, Unidades</td>
<td>-</td>
<td>-</td>
<td>Potenciométrico SM 4500-H-B</td>
</tr>
<tr>
<td>Temperatura, °C</td>
<td>Análisis inmediato</td>
<td>-</td>
<td>Termométrico SM 2550 B</td>
</tr>
<tr>
<td>Conductividad Eléctrica, us/cm</td>
<td>-</td>
<td>-</td>
<td>Electrométrico SM 2510-B</td>
</tr>
<tr>
<td>Oxígeno Disuelto, mg/L</td>
<td>-</td>
<td>-</td>
<td>Electrodo Luminiscencia EPA 360,3</td>
</tr>
</tbody>
</table>

El muestreo realizado fue de tipo manual, siguiendo las directrices plasmadas en el procedimiento interno ENVI-OPE-P-02 de muestreo de agua. Los resultados de análisis de SGS Colombia S.A.S se encuentran acreditados por el IDEAM bajo la Resolución 1566 del 21 de Julio de 2016, Resolución 2271 del 05 de Octubre de 2016, Resolución 1083 del 16 de Mayo del 2017, Resolución 2759 del 22 de Noviembre del 2017 y Resolución 2088 del 04 de septiembre del 2018 para los parámetros: Acidez, Alcalinidad, Arsénico, Bario, Cadmio, Cobre, Coliformes Fecales, Coliformes Totales, Color, Conductividad, Cromo, Demanda Bioquímica de Oxígeno, Demanda Química de Oxígeno, Dureza Cárctica, Dureza Total, Fenoles, Fosforo Total, Grasas y Aceites, Mercurio, Níquel, Nitrógeno Total Kjeldahl, Oxígeno Disuelto, pH, Temperatura, Plata, plomo, Selenio, Solidos Disueltos, Solidos Totales, Solidos Suspendidos, Sulfatos, Turbidez y Zinc.

Tabla 2.9 Tipo de recipientes, preservación y método de medición de muestras.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Recipiente</th>
<th>Preservación</th>
<th>Método</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidez, mg CaCO3/L</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración</td>
<td>Volumétrico SM 2310-B</td>
</tr>
<tr>
<td>Alcalinidad, mg CaCO3/L</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración</td>
<td>Volumétrico SM 2320-B</td>
</tr>
<tr>
<td>Color Triestimular</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración</td>
<td>Espectrofotométrico ISO 7887:2011, Método B</td>
</tr>
<tr>
<td>DBOs, mg O2/L</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración</td>
<td>S.M. 5210-B / ASTM 888-09 Método C</td>
</tr>
<tr>
<td>DQO, mg O2/L</td>
<td>Vidrio (Botella Winkler)</td>
<td>Refrigeración + H2SO4 Hasta pH<2</td>
<td>S.M. 5220 D - Reflujo cerrado colorimétrico</td>
</tr>
<tr>
<td>Dureza Cárctica, mg/L</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración + HNO3 Hasta pH<3</td>
<td>Volumétrico SM 3500-Ca B</td>
</tr>
<tr>
<td>Dureza Total, mg CaCO3/L</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración</td>
<td>Volumétrico SM 2340 C</td>
</tr>
<tr>
<td>Fenoles Totales, mg/L</td>
<td>Vidrio</td>
<td>Refrigeración + H2SO4 Hasta pH<2</td>
<td>Fotométrico Directo S.M 5530 B Mod., 5530-D</td>
</tr>
<tr>
<td>Fósforo Total, mg P/L</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración + H2SO4 Hasta pH<2</td>
<td>Ácido Hidrolizable SM 4500-P B, E</td>
</tr>
<tr>
<td>Grasas y Aceites, mg GyA/L</td>
<td>Vidrio boca ancha</td>
<td>Refrigeración + H2SO4 Hasta pH<2</td>
<td>Pastición Infrarrojo NTC 3362 - Método C</td>
</tr>
<tr>
<td>Nitrógeno Total Kjeldahl</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración + H2SO4 Hasta pH<2</td>
<td>Volumétrico S.M. 4500 Norg B-4500-NH3 B,C</td>
</tr>
<tr>
<td>Sólidos Totales, mg/L</td>
<td>Vidrio, Plástico</td>
<td>Refrigeración</td>
<td>Gravimétrico SM</td>
</tr>
</tbody>
</table>
Variables bacteriológicas

Tabla 2.10 Tipo de recipientes, preservación y método de medición de las muestras.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Recipiente</th>
<th>Preservación</th>
<th>Método</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes Totales NMP/100 ml</td>
<td>Vidrio Estéril</td>
<td>Esterilización + Refrigeración</td>
<td>Sustrato definido SM 9223B</td>
</tr>
<tr>
<td>Coliformes Fecales, NMP/100 ml *</td>
<td>Vidrio Estéril</td>
<td>Esterilización + Refrigeración</td>
<td>Sustrato definido SM 9223B</td>
</tr>
</tbody>
</table>

Análisis según normatividad colombiana

Las variables evaluadas se comparan con la normativa ambiental vigente en Colombia (Decreto 1076 de 2015 del Ministerio de Ambiente y Desarrollo Sostenible), cuyos requerimientos se presentan en la Tabla 2.11. Además, en la Tabla 2.12 se compara con los rangos de concentración según el estado trófico del cuerpo de agua.

Tabla 2.11 Criterios de calidad del agua según el Decreto 1076 de 2015

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Art. 2.2.3.3.9.3 Uso doméstico - tratamiento convencional</th>
<th>Art. 2.2.3.3.9.7 Recreación - Contacto primario</th>
<th>Art. 2.2.3.3.9.8 Recreación - Contacto secundario</th>
<th>Art. 2.2.3.3.9.10 Preservación Flora y Fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Unidades</td>
<td>5,0 - 9,0</td>
<td>5,0 - 9,0</td>
<td>5,0 - 9,0</td>
<td>6,5 - 8,5</td>
</tr>
<tr>
<td>Detergentes SAAM</td>
<td>mg/L</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,143</td>
</tr>
<tr>
<td>Grasas y aceites</td>
<td>mg/L</td>
<td>No película visible.</td>
<td>No película visible.</td>
<td>N.E.</td>
<td>N.E.</td>
</tr>
<tr>
<td>Cloruros</td>
<td>mg/L</td>
<td>250</td>
<td>N.E.</td>
<td>N.E.</td>
<td>N.E.</td>
</tr>
<tr>
<td>Nitratos</td>
<td>mg/L</td>
<td>10</td>
<td>N.E.</td>
<td>N.E.</td>
<td>N.E.</td>
</tr>
<tr>
<td>Cianuro libre</td>
<td>mg/L</td>
<td>0,2</td>
<td>N.E.</td>
<td>N.E.</td>
<td>0,052</td>
</tr>
<tr>
<td>Cobre</td>
<td>mg/L</td>
<td>1,0</td>
<td>N.E.</td>
<td>N.E.</td>
<td>0,1</td>
</tr>
<tr>
<td>Hierro Total</td>
<td>mg/L</td>
<td>N.E.</td>
<td>N.E.</td>
<td>N.E.</td>
<td>0,1</td>
</tr>
<tr>
<td>Plomo</td>
<td>mg/L</td>
<td>0,05</td>
<td>N.E.</td>
<td>N.E.</td>
<td>0,01</td>
</tr>
</tbody>
</table>
Estudio de Impacto Ambiental para la Línea de Conexión Subestación Nueva Colonia - Puerto Antioquia

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Decretode 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Art. 2.2.3.3.9.3 Uso doméstico - tratamiento convencional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Art. 2.2.3.3.9.7 Recreación - Contacto primario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Art. 2.2.3.3.9.8 Recreación - Contacto secundario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Art. 2.2.3.3.9.10. Preservación Flora y Fauna</td>
</tr>
<tr>
<td>Mercurio</td>
<td>mg/L</td>
<td>0,002 N.E.</td>
</tr>
<tr>
<td>Coliformes fecales</td>
<td>NMP/100ml</td>
<td>200 N.E.</td>
</tr>
<tr>
<td>Coliformes totales</td>
<td>NMP/100ml</td>
<td>1000 5000 N.E.</td>
</tr>
</tbody>
</table>

Fuente: Aqua y Terra Consultores Asociados S.A.S., 2019

Tabla 2.12 Rangos comunes de concentraciones de macronutrientes y DBO según el estado trófico del agua

<table>
<thead>
<tr>
<th>Estado trófico</th>
<th>Nitratos (mg/L)</th>
<th>N- Amoniacal (mg/L)</th>
<th>Ortofosfatos (mg/L)</th>
<th>Fósforo total (mg/L)</th>
<th>Dióxido de carbono (mg/L)</th>
<th>DBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligotrofía</td>
<td>0 -1,0</td>
<td>0 -0,3</td>
<td>0 – 0,0073</td>
<td>< 0,027</td>
<td>1,5 -5,0</td>
<td>< 2,0</td>
</tr>
<tr>
<td>Mesotrofía</td>
<td>1,0-5,0</td>
<td>0,3 – 2,0</td>
<td>0,0074 -0,013</td>
<td>0,028 – 0,051</td>
<td>2,0 – 12,5</td>
<td></td>
</tr>
<tr>
<td>Eutrofía</td>
<td>5,0 -50</td>
<td>2,0 - 15</td>
<td>> 0,014</td>
<td>> 0,052</td>
<td>0 – 12,0</td>
<td>> 12,5</td>
</tr>
</tbody>
</table>

Fuente: Aqua y Terra Consultores Asociados S.A.S., 2019

- Análisis según índices de calidad del agua

Los criterios de la calidad del agua se refieren a las concentraciones de los constituyentes que, si no son excedidos, permitirán concluir que el ecosistema acuático es apropiado para los múltiples usos del agua. Estos criterios se derivan de investigaciones y hechos científicos obtenidos de la experimentación o de observaciones sobre la respuesta de organismos sometidos a estímulos definidos bajo condiciones ambientales reguladas en un periodo de tiempo específico.

34 Clasificación trófica de Vollenweider (1968) para zonas tropicales (Ramírez y Viña 1998)

35 Clasificación trófica de Toledo et al., para zonas tropicales (Ramírez y Viña 1998).

36 Clasificación trófica de Toledo et al., para zonas tropicales (Ramírez y Viña 1998).

37 Condición natural en cuencas tropicales (Ramírez y Viña 1998).

38 Curva para índice de calidad de aguas naturales (Ramírez y Viña 1998).
Con el fin de establecer la calidad de las aguas superficiales, se evaluaron algunos parámetros fisicoquímicos y microbiológicos, los cuales se presentan a continuación como marco teórico. Se determinan como criterios de calidad los Índices de Contaminación (ICO’s) y el Índice de Calidad del Agua (ICA) para evaluar el impacto que sobre un cuerpo de agua produce una carga contaminante mediante tratamiento matemático.

- Índice de calidad de agua (ICA)

Para analizar la calidad del agua de las fuentes superficiales estudiadas, se utiliza el indicador de calidad llamado “Índice de Calidad del Agua ICA-NSF (WQI)” propuesto por la Fundación Sanitaria Nacional de los Estados Unidos en el año de 1981. Este es uno de los índices más usados para determinar la calidad de los cuerpos de agua superficial, el cual permite tener una idea general de los problemas que puede tener el agua y del enfoque que debe darse a posteriores estudios; además, sirve como base de comparación espacial y temporal de calidad en diferentes cuerpos de agua.

La determinación de índice requiere de la medición de las variables: % de saturación de oxígeno disuelto, Coliformes fecales, pH, demanda bioquímica de oxígeno, nitratos, fosfatos, cambio de temperatura, turbiedad y sólidos totales, y se calcula como lo muestra la Ecuación 2.1:

\[WQI = \sum_{i=1}^{9} W_i \times Q_i \]

Ecuación 2.1 Índice de calidad –WQI

Una vez determinado el índice WQI en un punto determinado, puede clasificarse la fuente de acuerdo con los rangos que se señalan en la Tabla 2.11.

Tabla 2.13 Clasificación de calidad del agua en función del índice de calidad
Estudio de Impacto Ambiental para la Línea de Conexión Subestación Nueva Colonia-Puerto Antioquia

<table>
<thead>
<tr>
<th>Valor del índice</th>
<th>Color</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 25</td>
<td>Rojo</td>
<td>Calidad muy mala (MM)</td>
</tr>
<tr>
<td>25 – 50</td>
<td>Verde</td>
<td>Calidad mala (M)</td>
</tr>
<tr>
<td>50 – 70</td>
<td>Amarillo</td>
<td>Calidad media (R)</td>
</tr>
<tr>
<td>70 – 90</td>
<td>Azul</td>
<td>Calidad buena (B)</td>
</tr>
<tr>
<td>90 – 100</td>
<td>Azul</td>
<td>Calidad excelente (E)</td>
</tr>
</tbody>
</table>

Fuente: National Sanitation Foundation Water Quality Index.

- Índice de contaminación (ICO’s)

Para el presente estudio se incluyen los índices de contaminación por mineralización (ICOMI), por sólidos suspendidos (ICOSUS), por contaminación trófica (ICOTRO), por materia orgánica (ICOMO), y por pH (ICOpH), para los cuales se va a emplear un código de colores, para indicar el Rango de los ICO’S calculados en cada punto de muestreo.

Tabla 2.14 Variables fisicoquímicas y bacteriológicas tenidas en cuenta para la determinación de los índices de contaminación del agua (ICO’s).

<table>
<thead>
<tr>
<th>ÍNDICES</th>
<th>VARIABLE</th>
<th>INTERPRETACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICOMI</td>
<td>Conductividad</td>
<td>0 = Baja contaminación</td>
</tr>
<tr>
<td></td>
<td>dureza</td>
<td>1 = Alta contaminación</td>
</tr>
<tr>
<td></td>
<td>Alcalinidad</td>
<td></td>
</tr>
<tr>
<td>ICOSUS</td>
<td>Sólidos suspendidos</td>
<td>0 = Baja contaminación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Alta contaminación</td>
</tr>
<tr>
<td>ICOTRO</td>
<td>Fósforo total (mg/L). Realizado a partir de la sumatoria de fósforo inorgánico y orgánico</td>
<td><0,01 = Oligotrófico 1 = Hipereutrófico</td>
</tr>
<tr>
<td>ICOMO</td>
<td>DBO</td>
<td>0 = Baja contaminación</td>
</tr>
<tr>
<td></td>
<td>Coliformes Totales</td>
<td>1 = Alta contaminación</td>
</tr>
<tr>
<td></td>
<td>% Saturación de Oxígeno Disuelto</td>
<td></td>
</tr>
<tr>
<td>ICOpH</td>
<td>pH</td>
<td>0 = Baja contaminación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Alta contaminación</td>
</tr>
</tbody>
</table>

Para calcular los diferentes índices de contaminación, se aplicaron las fórmulas que se describen a continuación:

39 Ibid.

\[ICOMI = \frac{1}{3}(I_{\text{Conductividad}} + I_{\text{Dureza}} + I_{\text{Alcalinidad}}) \]

\[ICOSUS = -0.02 + 0.0003 \text{ Sólidos Suspendidos (mg/L)} \]

\[ICOTRO = Fósforo Total (mg/L) \]

\[ICOMO = \frac{1}{3}(I_{\text{DBO}} + I_{\text{Coliformes}} + I_{\text{Oxígeno \%}}) \]

\[ICO_{pH} = \frac{e^{31.08 + 3.45 \text{pH}} - 1}{e^{31.08 + 3.45 \text{pH}}} \]

Ecuación 2.2 Índices de contaminación

Tabla 2.15 Valores de colores para los índices ICO’s

<table>
<thead>
<tr>
<th>Valor del ICO</th>
<th>Grado de contaminación</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 - 0.200</td>
<td>Ninguna</td>
</tr>
<tr>
<td>0.200 - 0.400</td>
<td>Bajo</td>
</tr>
<tr>
<td>0.400 - 0.600</td>
<td>Medio</td>
</tr>
<tr>
<td>0.600 - 0.800</td>
<td>Alto</td>
</tr>
<tr>
<td>0.800 - 1.000</td>
<td>Muy Alto</td>
</tr>
</tbody>
</table>

- **Sedimentos**

Se determinaron las características fisicoquímicas de los sedimentos en el punto de muestreo establecido, ubicado en el municipio de Apartadó, departamento de Antioquia, con el fin de evaluar su calidad. Realizar una comparación de los resultados de laboratorio contra las directrices canadienses\(^{40}\) sobre la calidad del sedimento para la protección de la vida acuática.

Tabla 2.16 Parámetros analizados

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Recipiente</th>
<th>Método</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobre, mg/Kg(^*)</td>
<td>Bolsa Plástica Hermética</td>
<td>EPA 3051 EPA 200.8 - ICP/MS</td>
</tr>
<tr>
<td>Cromo, mg/Kg(^*)</td>
<td></td>
<td>EPA 3050B – S.M. 3120B - ICP/OES</td>
</tr>
<tr>
<td>Grasas y aceites, mg/Kg(^**)</td>
<td></td>
<td>NTC 3362 Método C - Infrarrojo de</td>
</tr>
</tbody>
</table>

PARAMETROS	RECIPIENTE	METODO
Hidrocarburos Totales, mg/Kg** | partición (modificado) - B | EPA 8440 - Infrarrojo de partición - B
Níquel, mg/Kg* | EPA 3051 - EPA 200.8 | EPA 3050B – S.M. 3120B - ICP/OES
Zinc, mg/Kg* | |

*Parámetro Acreditado
** Parámetro Subcontratado

Se utiliza para muestrear fondos arenosos o fangosos especialmente cuando la profundidad del agua no permite hacer colectas manuales. Se recomienda para corrientes con profundidades mayores a 3m en corrientes lentas o fuertes (IDEAM, 2006). Permite hacer muestreos cuantitativos porque en cada arrastre se cuenta con un área de muestreo determinada por el fabricante. También se recomiendan tres réplicas por estación de muestreo, lavando la muestra con agua en bandejas esmaltadas y utilizando tamices de ojo de malla de 500 μm.

![Esquema Draga tipo Petersen](http://www.limnotec.com.br/itm/dragas-amostroadores-de-invert.-bentonicos.html)

Figura 2.4 Esquema Draga tipo Petersen.

PARAMETROS	LIMITES NORMATIVOS: CANADIAN SEDIMENT QUALITY GUILELINES FOR THE PROTECTION OF AQUATIC LIFE		
	ISQG	PEL	CUMPLIMIENTO
Grasas y Aceites, mg GyA/Kg	N.E	N.E	N.A
Hidrocarburos Totales, mg HTC/kg	N.E	N.E	N.A
Cobre Total, mg Kg	35.7	197	
Cromo Total, mg Kg	37.3	90	
Zinc Total,	123	315	

Tabla 2.17 Límite establecido.
2.3.3.1.7 Usos del agua

Para la identificación y el análisis de los usos del agua en el área de influencia del proyecto se contó con información secundaria que fue suministrada por la Corporación para el Desarrollo Sostenible del Urabá – CORPOURABA. Además se hizo una revisión de documentos e informes oficiales de los diferentes entes gubernamentales que ayudaron a complementar la información.

2.3.3.1.8 Hidrogeología

Para este componente, inicialmente se realiza una introducción sobre la importancia de las aguas subterráneas y se presentan unas definiciones sobre los tipos de acuíferos y características de las unidades hidrogeológicas, de acuerdo con el Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM)

- Unidades hidrogeológicas, direcciones generales de flujo, zonas de recarga, vulnerabilidad

Como entendimiento del contexto regional, se consultó la Zonificación y codificación hidrográfica e hidrogeológica de Colombia del 2013, el Estudio Nacional del Agua 2014, además de artículos e informes de investigación desarrollados en el Urabá por CORPOURABÁ en el año 2013 y en el año 2002 y por la universidad Nacional de Colombia en 2010.

Tabla de Parámetros

<table>
<thead>
<tr>
<th>Parametros</th>
<th>LIMITES NORMATIVOS: CANADIAN SEDIMENT QUALITY GUICELINES FOR THE PROTECTION OF AQUATIC LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/Kg</td>
<td>ISQG</td>
</tr>
<tr>
<td>Niquel Total, mg/Kg</td>
<td>N.E</td>
</tr>
</tbody>
</table>

N.E: No especifico
N.A: No Aplica

ISQG: Interim freshwater sediment quality guideline (Guía provisional de calidad de sedimentos de agua dulce)

PEL: Probable effect levels (Nivel de efecto probable)

45 CORPOURABÁ Modelo hidrogeológico conceptual del acuífero del golfo de Urabá elaborado a partir de la interpretación de información geológica y geofísica. 2013.
Para un contexto más local se presenta información del potencial hidrogeológico, zonas de recarga y descarga, direcciones generales del flujo, calidades y uso del agua subterránea, vulnerabilidad y esquema de las unidades hidrogeológicas realizados por la Amaya en 2009[48] y Gómez en 2009[49] sobre el uso combinado de fuentes de agua subterránea y superficial para el suministro de agua potable en el municipio de Turbo.

Considerando este contexto y basado en las características de las unidades geológicas y de la información obtenida de los sondeos exploratorios realizados en campo, se realiza la clasificación de las unidades hidrogeológicas, siguiendo los lineamientos de la Asociación Internacional de Hidrogeólogos (AIH) la cual presenta una propuesta para el uso de las convenciones y caracterización de las unidades hidrogeológicas, de acuerdo con el potencial para almacenar y transmitir agua subterránea de las rocas y sedimentos, en función de la composición, permeabilidad y capacidad de cada unidad litológica evaluada.

- Inventario de puntos hidrogeológicos

Con base en la información suministrada por habitantes del sector y mediante el acercamiento por parte de un profesional social a las diferentes fincas y viviendas, se realizó la identificación de las fuentes de abastecimiento de agua. Posteriormente con visitas de un profesional del componente abiótico se recolectó información de las fuentes de agua, reportándose como suministros el acueducto municipal, la explotación de pozos, carros tanque y captación de fuentes superficiales, siendo la principal fuente de agua en las viviendas el acueducto y para las fincas de producción bananera la explotación de pozos con bombeo, ninguno de estos, dentro o cercano al área de influencia del proyecto.

También se solicita y revisa información suministrada por CORPOURABÁ sobre las concesiones de agua subterránea y el tipo de uso autorizado.

2.3.3.1.9 Geotecnia

[48] CORPOURABÁ, UNIVERSIDAD NACIONAL DE COLOMBIA- UNAL. Hidrogeología del acuífero del Eje Bananero de Urabá. 2010
[49] AMAYA RUÍZ, GUILLERMO. UNIVERSIDAD NACIONAL DE COLOMBIA. Estudio de uso combinado de fuentes de agua superficial y subterránea para el suministro de agua potable para el municipio de Turbo. 2009.
Para la zonificación y cartografía geotécnica se adelantaron las siguientes actividades:

- Recopilación y análisis de la información disponible (topografía, el POT, informes, artículos o trabajos de entidades públicas y/o privadas, etc.) de los municipios de Apartadó y Turbo.
- Visita de reconocimiento al área del proyecto y recorrido a las vías existentes en la zona, con el objeto de evaluar las vías de acceso.
- Se realizaron 6 apiques de hasta 1,5 m de profundidad, para la identificación de las características del material superficial que constituye el área de estudio.
- La determinación de parámetros geomecánicos del suelo se realizó mediante ensayos de expansión, CBRs inalterados, ensayos de PDC y clasificaciones (gradaciones, límites de atterberg, humedades naturales).
- Análisis de la información producida para este estudio de los componentes geología, geomorfología, coberturas y uso de la tierra, amenazas y geología para ingeniería basada en los registros de los sondeos exploratorios y los resultados de los ensayos de laboratorio, con el fin de presentar una zonificación de la aptitud geológica, la cual consiste en identificar zonas homogéneas, con un comportamiento geológico y de estabilidad similares, a las cuales se les asigna un tipo de aptitud para las intervenciones, siguiendo la siguiente clasificación:

 Zonas aptas (A): Corresponden a zonas que presentan alto grado de estabilidad; no se aprecia la ocurrencia de procesos morfodinámicos activos e inactivos tales como socavación de márgenes y movimientos en masa que afecten la estabilidad global del predio de interés; la estabilidad global de estas zonas está condicionada al tipo de intervención que se proyecte y al uso y manejo que se dé a estas.

 Zonas aptas con restricciones moderadas (ARM): Corresponden a zonas estables dentro del predio de interés; sin embargo, su estabilidad está condicionada por la incidencia directa que presentan procesos morfodinámicos activos tales como socavación de márgenes y movimientos en masa; la estabilidad global de estas zonas dependerá del manejo que se dé a los procesos morfodinámicos y al tipo de
intervención que se proyecte. Se considera que las obras de estabilización proyectadas son técnica y económicamente viables.

Zonas aptas con restricciones altas (ARA): En las cuales se evidencia la ocurrencia de procesos morfodinámicos activos tales como socavación de márgenes y movimientos en masa; la estabilidad global de estas zonas dependerá del manejo que se dé a los procesos morfodinámicos y al tipo de intervención que se proyecte sobre estas. El estudio debe evaluar la viabilidad técnica y económica de las obras de estabilización proyectadas dentro del lote.

Zonas no aptas por inestabilidad (NAI): Son aquellas con evidente inestabilidad por la ocurrencia de procesos morfodinámicos activos tales como socavación de márgenes y movimientos en masa dentro del lote de interés, el estudio considera que las obras de estabilización proyectadas son técnicamente complejas y de alto costo con respecto a las inversiones proyectadas en la zona o predio de interés.

2.3.3.1.10 Atmosfera

Con el objetivo de tener una línea base para este componente se procedió a identificar las actividades en la zona que generan emisiones atmosféricas por medio de información secundaria y con la ayuda de la herramienta Google Earth. Adicionalmente, se hizo una caracterización de las condiciones meteorológicas de la zona, con base en las estaciones cercanas del IDEAM y con información secundaria.

- Clima

Para realizar la caracterización meteorológica del área de influencia del proyecto se utilizó información secundaria de seis estaciones de monitoreo pertenecientes al Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), con lo cual se buscó dar una descripción más detallada de las variables climatológicas de interés, estas fueron:

- Precipitación media mensual multianual y precipitación total anual.

- Días mensuales de precipitación
- Temperatura media mensual, máxima y mínima
- Brillo solar mensual multianual
- Evaporación promedio mensual multianual
- Humedad relativa media
- Nubosidad promedio mensual multianual
- Velocidad media del viento

En la Tabla 2.18 se presenta la información general de las estaciones meteorológicas que fueron utilizadas.

Tabla 2.18 Estaciones meteorológicas del IDEAM.

<table>
<thead>
<tr>
<th>Código</th>
<th>ESTACIÓN</th>
<th>LATITUD</th>
<th>LONGITUD</th>
<th>ELEVACIÓN</th>
<th>TIPO</th>
<th>TIEMPO DE RECOLECCIÓN DE DATOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>CASCO EL (12010070)</td>
<td>7,884444</td>
<td>-76,647778</td>
<td>18</td>
<td>Pluviométrica</td>
<td>Fecha instalación: 1977</td>
</tr>
<tr>
<td>E2</td>
<td>LORENA LA (12010060)</td>
<td>7,863056</td>
<td>-76,689167</td>
<td>10</td>
<td>Pluviométrica</td>
<td>Fecha instalación: 1976</td>
</tr>
<tr>
<td>E3</td>
<td>EUPOL (12010100)</td>
<td>7,945528</td>
<td>-76,617389</td>
<td>10</td>
<td>Pluviométrica</td>
<td>Fecha instalación: 1977</td>
</tr>
<tr>
<td>E4</td>
<td>SAN JOSE APARADO (12010160)</td>
<td>7,866667</td>
<td>-76,6</td>
<td>100</td>
<td>Pluviográfica</td>
<td>Fecha instalación: 1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fecha suspensión: 1997</td>
</tr>
<tr>
<td>E5</td>
<td>STA MARTHA (12010120)</td>
<td>7,923833</td>
<td>-76,649083</td>
<td>130</td>
<td>Pluviométrica</td>
<td>Fecha instalación: 1977</td>
</tr>
<tr>
<td>E6</td>
<td>RIOGRANDE (12015050)</td>
<td>7,916667</td>
<td>-76,633333</td>
<td>20</td>
<td>Climatológica ordinaria</td>
<td>Fecha instalación: 1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fecha suspensión: 1992</td>
</tr>
</tbody>
</table>

Fuente: IDEAM, 2019

- Calidad del aire

Para determinar la calidad del aire en el área de influencia, se llevó a cabo el monitoreo de los contaminantes criterios (PM 2,5, PM 10, NO2, SO2, CO). El monitoreo se llevó a cabo entre el 6 y el 23 de abril del presente año, en una estación ubicada en el municipio de Turbo - estación E1 (Tabla 2.19 y la Figura 2.5). Durante los dieciocho (18) días continuos del monitoreo de
calidad del aire, se dio cumpliendo con los lineamientos establecidos en el Protocolo para el Monitoreo y Seguimiento de la Calidad del Aire y los métodos de referencia previamente acreditados por el IDEAM a AQUALAB CONSULTING S.A.S., mediante Resolución 0147 del 24 de enero de 2018.

Adicionalmente se cuenta con información de las estaciones de monitoreo que se utilizaron en el Estudio de Impacto Ambiental con el que se obtuvo la Licencia Ambiental para el proyecto Puerto Antioquia, las cuales fueron utilizadas también para su respectiva modificación de Licencia (estaciones E2 y E3).

Los resultados obtenidos fueron comparados con los límites máximos permisibles establecidos en el artículo segundo de la Resolución 2254 de 2017, expedida por Ministerio de Ambiente y Desarrollo Sostenible – MADS

Tabla 2.19 Puntos de monitoreo de calidad del aire.

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>Nombre</th>
<th>COORDENADAS MAGNA SIRGAS ORIGEN OESTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ESTE</td>
</tr>
<tr>
<td>E1</td>
<td>Mega Colegio</td>
<td>1039684</td>
</tr>
<tr>
<td>E2</td>
<td>Sector Norte</td>
<td>1039432</td>
</tr>
<tr>
<td>E3</td>
<td>Centro</td>
<td>1037682</td>
</tr>
</tbody>
</table>

- **Parámetros monitoreados**

Los parámetros o contaminantes atmosféricos que se monitorearon para determinar la calidad del aire en el área de influencia del proyecto se presentan en la Tabla 2.20.

<table>
<thead>
<tr>
<th>Parámetro o Contaminante Atmosférico</th>
<th>Método de Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material particulado menor a 10 micrómetros de diámetro aerodinámico (PM10)</td>
<td>CFR Título 40 Parte 50 Apéndice J, Bajo Volumen RFPS-0714-216</td>
</tr>
<tr>
<td>Material particulado menor a 2.5 micrómetros de diámetro aerodinámico (PM2.5)</td>
<td>CFR Título 40 Parte 50 Apéndice L, Bajo Volumen RFPS-1014-219</td>
</tr>
<tr>
<td>Dióxido de azufre (SO₂)</td>
<td>CFR Título 40 Parte 50 Apéndice A-2, Pararrosanilina</td>
</tr>
<tr>
<td>Dióxido de nitrógeno (NO₂)</td>
<td>Jacobs - Hochheiser.</td>
</tr>
<tr>
<td>Monóxido de carbono (CO)</td>
<td>CFR Título 40 Parte 50, Capítulo I, Subcapítulo C, Apéndice C, Infrarrojo no dispersivo - NDIR RFCA-0981-054</td>
</tr>
</tbody>
</table>

Fuente: Aqualab Consulting S.A.S., 2019

- **Cálculo del índice de calidad del aire – ICA**

Tal y como lo establece el Manual de Operación del Protocolo para el Monitoreo y Seguimiento de la Calidad del Aire, en su numeral 7.6.7., el Índice de Calidad del Aire (ICA) permite
comparar los niveles de contaminación de calidad del aire, de las estaciones que pertenecen a un SVCA, en este caso particular un SVCAI (Sistema de Vigilancia de Calidad del Aire Industrial). Es un indicador de la calidad del aire diaria. El ICA corresponde a una escala numérica a la cual se le asigna un color, el cual a su vez tiene una relación con los efectos a la salud.

El ICA está enfocado en cinco (5) contaminantes principales: Ozono, material particulado (PM10 y PM2.5), dióxido de azufre, dióxido de nitrógeno y monóxido de carbono.

El ICA corresponde a un valor adimensional, que oscila entre 0 y 500. En la Figura 2.6 se presentan los rangos cualitativos, los efectos a la salud y el valor del ICA.

<table>
<thead>
<tr>
<th>ICA</th>
<th>COLOR</th>
<th>CLASIFICACIÓN</th>
<th>O₃ 8h ppm</th>
<th>O₃ 1h Ppm (1)</th>
<th>PM₁₀ 24h μg/m³</th>
<th>PM₂.₅ 24h μg/m³</th>
<th>CO 8h ppm</th>
<th>SO₂ 24h ppm</th>
<th>NO₂ 1h ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>Verde</td>
<td>Buena</td>
<td>0,000</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0,000</td>
<td>(2)</td>
</tr>
<tr>
<td>51-100</td>
<td>Amarillo</td>
<td>Moderada</td>
<td>0,059</td>
<td>0,060</td>
<td>0,075</td>
<td>0,075</td>
<td>4,4</td>
<td>0,034</td>
<td>(2)</td>
</tr>
<tr>
<td>101 - 150</td>
<td>Naranja</td>
<td>Dañina a la salud para grupos sensibles</td>
<td>0,076</td>
<td>0,095</td>
<td>0,125</td>
<td>0,164</td>
<td>4,5</td>
<td>0,035</td>
<td>(2)</td>
</tr>
<tr>
<td>151 - 200</td>
<td>Rojo</td>
<td>Dañina a la salud</td>
<td>0,096</td>
<td>0,115</td>
<td>0,165</td>
<td>0,204</td>
<td>9,5</td>
<td>0,145</td>
<td>(2)</td>
</tr>
<tr>
<td>201 - 300</td>
<td>Púrpura</td>
<td>Muy Dañina a la salud</td>
<td>0,116</td>
<td>0,155</td>
<td>0,195</td>
<td>0,234</td>
<td>12,4</td>
<td>0,225</td>
<td>(2)</td>
</tr>
<tr>
<td>301-400</td>
<td>Marrón</td>
<td>Peligrosa</td>
<td>(3)</td>
<td>0,405</td>
<td>0,504</td>
<td>0,604</td>
<td>30,5</td>
<td>0,665</td>
<td>(2)</td>
</tr>
<tr>
<td>401-500</td>
<td>Marrón</td>
<td>Peligrosa</td>
<td>(3)</td>
<td>0,504</td>
<td>0,604</td>
<td>0,704</td>
<td>40,5</td>
<td>0,834</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Figura 2.6 Índices de calidad del aire para cada parámetro
Fuente; Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010

El cálculo del ICA se realiza a partir de la Ecuación 2.7 y se reporta el mayor valor obtenido del cálculo de cada uno de los contaminantes.

\[
I_p = \frac{I_{Hi} - I_{Lo}}{BP_{Hi} - BP_{Lo}} (C_p - BP_{Lo}) + I_{Lo}
\]

Ecuación 2.7 Cálculo de Índice de calidad del aire

Donde:

\(I_p\) Índice para el contaminante p.
C_p = Concentración medida para el contaminante p.
BP_{HI} = Punto de corte mayor o igual a C_p
BP_{LO} = Punto de corte menor o igual a C_p
I_{HI} = Valor del ICA correspondiente al BP_{HI}
I_{LO} = Valor del ICA correspondiente al BP_{LO}

- Ruido

Para determinar los niveles de presión sonora en el área de influencia del proyecto se llevó a cabo una campaña de monitoreo los días 12, 15, 19 y 28 de abril del presente año en un punto ubicado en Nueva Colonia (estación E1). Los monitoreos se realizaron durante dos horas, una hora en periodo diurno y otra hora en periodo nocturno, para días hábiles y festivos. Además se cuenta con información del monitoreo realizado en el Estudio de Impacto Ambiental para la modificación de Licencia Ambiental para Puerto Antioquia⁵² (estaciones E2 y E3), el cual fue llevado a cabo por SGS Colombia S.A.S.

Las coordenadas y la ubicación de las estaciones monitoreadas se presentan en la Tabla 2.21 y Figura 2.7.

Tabla 2.21 Coordenadas estaciones de monitoreo.

<table>
<thead>
<tr>
<th>ESTACIÓN</th>
<th>COORDENADAS MAGNA SIRGAS ORIGEN OESTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESTE</td>
</tr>
<tr>
<td>E1</td>
<td>1039684</td>
</tr>
<tr>
<td>E2</td>
<td>1039432</td>
</tr>
<tr>
<td>E3</td>
<td>1037682</td>
</tr>
</tbody>
</table>

⁵² COLOMBIA. AUTORIDAD NACIONAL DE LICENCIAS AMBIENTALES – ANLA. Resolución 0078 (28, enero, 2016). Op., cit
Figura 2.7 Localización puntos de monitoreo
Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019

Para los monitoreos, se empleó un sonómetro clase 1 de última tecnología, el cual tiene tres (3) perfiles acústicos de medición. Este sonómetro cuenta con tres (3) filtros de ponderación temporal (Slow, Fast e Impulse) y tres (3) filtros de ponderación frecuencial (A, C y Z), adicionalmente tiene un analizador en tiempo real de frecuencias de 1/3 de octava, a fin de poder realizar la corrección por frecuencias que indica la Resolución 0627. Por otra parte, se contó con una estación meteorológica portátil, en donde se monitoreaba de manera simultánea la velocidad del viento. Los equipos empleados en este monitoreo se relacionan en la Tabla 2.22.

Tabla 2.22 Equipos utilizados

<table>
<thead>
<tr>
<th>EQUIPO</th>
<th>MARCA</th>
<th>MODELO</th>
<th>SERIAL</th>
<th>CÓDIGO INTERNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonómetro</td>
<td>Svanek</td>
<td>Svan 977</td>
<td>45428</td>
<td>ALEC-014</td>
</tr>
<tr>
<td>Sonómetro</td>
<td>Svanek</td>
<td>Svan 953</td>
<td>27223</td>
<td>ALEC-015</td>
</tr>
<tr>
<td>Pistófono</td>
<td>Svanek</td>
<td>SV33</td>
<td>57627</td>
<td>ALPC-001</td>
</tr>
<tr>
<td>Estación Meteorológica</td>
<td>Davis</td>
<td>Vantage Vue</td>
<td>160630018</td>
<td>ALEC-003</td>
</tr>
</tbody>
</table>

Fuente: Aqualab Consulting S.A.S., 2019
Una vez se obtienen los resultados, estos se comparan con la normativa colombiana para determinar si hay afectaciones a la comunidad circundante del área del proyecto por ruido ambiental.

2.3.3.2 Medio biótico

Para la caracterización del medio biótico se siguió lo estipulado en los términos de referencia para la elaboración del Estudio de Impacto Ambiental – EIA en proyectos de transmisión de energía eléctrica.

En los siguientes numerales se presenta la metodología para el desarrollo de los componentes del medio biótico. Para los grupos de flora y fauna que fueron objeto de manipulación y/o colecta se utilizó el permiso de Estudio para la Recolección de Especímenes de Especies Silvestres de la Diversidad Biológica con Fines de elaboración de Estudios Ambientales otorgado a AQUA & TERRA CONSULTORES ASOCIADOS S.A.S, a través de la Resolución 0430 del 22 de abril del 201653.

2.3.3.2.1 Ecosistemas terrestres

Con el fin de identificar el gran bioma, bioma y ecosistemas terrestres presentes en el área de estudio se siguieron los lineamientos del libro de ecosistemas continentales, costeros y marinos de Colombia54 y su actualización de mapas realizada en el 2017, para la identificación de los ecosistemas se tuvo en cuenta los Biomas y las Unidades Bióticas definidas por el Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - IAvH, los cuales relacionan la información de los ambientes de la geobiosfera con la similitud de la composición de las especies. Por otra parte, la identificación de las zonas de vida a la que pertenece el área de estudio se realizó siguiendo el sistema de clasificación de zonas de vida de Holdridge55.

53 AUTORIDAD NACIONAL DE LICENCIAS AMBIENTALES –ANLA. Resolución 0430 del 22 de abril del 2016 “Por la cual se otorga Permiso de Estudio para la Recolección de Especímenes de Especies Silvestres de la Diversidad Biológica con Fines de Elaboración de Estudios Ambientales y se toman otras determinaciones” Bogotá. 2016. 27 p
Una vez definidos los ecosistemas presentes en el área de estudio, se identificaron y se interpretaron las coberturas de la tierra de estos ecosistemas empleando los lineamientos de la metodología CORINE Land Cover adaptada para Colombia 56, empleando como insumo ortofotos tomadas en campo. Adicionalmente, se realizaron recorridos en campo, para verificar y ampliar la identificación de las coberturas vegetales presentes. Así mismo se describen los ecosistemas estratégicos, sensibles y/o áreas protegidas que se encuentran dentro y/o cerca del proyecto, para lo cual se utilizó la plataforma del Sistema de Información de Alertas Tempranas TREMARCTOS COLOMBIA 3.0 (escala 1:250.000)57.

- Flora

Para la caracterización florística del área de intervención del proyecto, se realizó un inventario forestal al 100% de la categoría de fustales (CAP >31,4 cm) en cada una de las coberturas afectadas. Adicionalmente, con información secundaria de la Corporación Autónoma Regional CORPOURABA y otros estudios florísticos en el área se realizó la descripción general de las coberturas no intervenidas que hacen parte del área de influencia del proyecto.

Por otra parte, las categorías de latizales (CAP ≥15.7 cm <31.4 cm) y brinzales (CAP < 15.7 cm) se evaluaron a través de parcelas de muestreo dentro del área de intervención del proyecto y en cada una de las coberturas afectadas. Para los latizales se usaron de 6 a 8 parcelas de 5 x 5 m en cada cobertura y para los brinzales de 6 a 8 parcelas de 2.5 x 2.5 m. En ambos casos el número de parcelas dependió de la abundancia de regeneración.

A continuación, las mediciones en cada una de las categorías de vegetación forestal.

- **Fustales**

Cada individuo de la categoría de fustales se le midió las variables Circunferencia a la altura del pecho (CAP), Altura total (HT), Altura comercial (HC), se les identificó su estado fitosanitario, fueron georeferenciados y marcados con pintura amarilla indicado el número correspondiente a cada individuo, cuando no fue posible la identificación del árbol a simple vista se colecto la muestra de cada individuo no identificado siguiendo la metodología propuesta por Villareal et al.[58].

- **Latizales**

Cada individuo de esta categoría fue medido de igual forma que los individuos de la categoría de los fustales, sin embargo estos no fueron pintados ni georeferenciados.

- **Brinzales**

Los individuos en esta categoría fueron medidos en su altura y circunferencia con el fin de verificar su categoría, más adelante se encuentra la metodología usada para el análisis de regeneración natural.

- **Análisis de información**

Estructura horizontal del bosque

Índice de valor de importancia (IVI)

Con el fin de realizar el análisis estructural del bosque, se calculó el índice de valor de importancia (IVI), formulado por Curtis & Mc Intosh[59], éste se calcula para cada especie a partir de la suma de la abundancia relativa, la frecuencia relativa y la dominancia relativa.

Este análisis permite evaluar el comportamiento de los árboles individuales y de las especies en la superficie del bosque a través de la ocurrencia de las especies y su importancia ecológica dentro del ecosistema. Este índice permite determinar las especies más relevantes dentro de la estructura de un bosque, a través de los parámetros de abundancia, frecuencia y dominancia. Las especies relevantes determinadas por este índice son las que presentan mejor adaptación a las condiciones medioambientales de las coberturas boscosas en estudio. En la Ecuación 2.8 se expresa la forma en que se halla este índice.

\[IVI = Ar + Fr + Dr \]

Ecuación 2.8 Expresión matemática para hallar el índice de valor de importancia (IVI)

Dónde:

IVI: Índice de Valor de Importancia

Ar: abundancia relativa: Porcentaje de cada especie en relación con el número total de individuos de todas las especies encontradas en la muestra. En la Ecuación 2.9 se muestra la forma en que se calcula la abundancia relativa.

\[Ar = \left(\frac{A_{abs}}{\sum A_{absTotal}} \right) \times 100\% \]

Ecuación 2.9 Ecuación para hallar la abundancia relativa

Fr: frecuencia relativa: Es la frecuencia absoluta de una especie en relación con la suma de frecuencias absolutas de todas las especies presentes en la muestra. En la Ecuación 2.10 se muestra la forma en que se halla la frecuencia relativa.

\[Fr = \left(\frac{F_{abs}}{\sum F_{absTotal}} \right) \times 100\% \]

Ecuación 2.10 Ecuación para hallar la frecuencia relativa

Dr: dominancia relativa: Es el porcentaje de la dominancia absoluta de una especie con respecto a la suma de las dominancias absolutas de todas las especies presentes en la muestra. En la Ecuación 2.11 se muestra la forma en que se calcula la dominancia relativa:
Ecuación 2.11 Ecuación para hallar la dominancia relativa
- Cociente de mezcla (C.M)

Es uno de los índices más sencillos de calcular y expresa la relación entre el número de especies y el número de individuos totales (S : N ó S / N). El CM proporciona una idea somera de la intensidad de mezcla, así como una primera aproximación de la heterogeneidad de los bosques. Es de mencionar que los valores dependen fuertemente del diámetro mínimo de la medición y del tamaño de la muestra, por lo cual, solo se debe comparar ecosistemas con muestras de igual intensidad.

Ecuación 2.12 Ecuación para hallar el cociente de mezcla

Dónde:
S = Número total de especies en el muestreo
N = Número total de individuos en el muestreo

Estructura vertical

Diagrama de perfil

Es la herramienta más utilizada para la evaluación de la estructura vertical de los bosques; dicho diagrama intenta una representación bidimensional de una estructura tridimensional que es el bosque, conformado por fajas estrechas. Se construye con base en mediciones exactas de la posición y altura de todos los árboles del sitio de muestreo seleccionado, así como de la amplitud y profundidad de sus copas a partir de una altura mínima inferior arbitraria o de un
diámetro mínimo de medición. Los perfiles permiten caracterizar las principales formaciones tropicales y sus clases de arquitectura. En este proyecto se establecieron polígonos de 10 x 100 m donde se tomaron las mediciones mencionadas para la construcción del diagrama de perfil en cada tipo de cobertura.

Una vez construido el diagrama, se pueden presentar varias tendencias (Figura 2.8), si se observa conglomerados o conjuntos más o menos aislados de puntos, éstos indican el virtual vacío de las copas en los niveles intermedios. El número de estratos es equivalente al número de conglomerados. Igualmente, el diagrama permite la visualización de los árboles emergentes, los cuales aparecen como puntos aislados en la parte superior derecha de la gráfica, sin constituir un estrato propiamente dicho. Adicionalmente, si en el diagrama solo aparece una dispersión generalizada de puntos, sin vacíos o agrupaciones, es evidencia de la carencia de estratos en el bosque. Dispersiones con tendencias más o menos paralelas al eje de las abscisas, son típicas de sucesiones secundarias tempranas, mientras que dispersiones crecientes en forma de cola de cometa, representan ecosistemas boscosos más heterogéneos y maduros.

Figura 2.8 Tendencias de estratificación para los diagramas de dispersión de copas
Fuente: Omar A. Melo, Rafael Vargas 2003

Estructura total o distribuciones diamétricas

Para realizar el análisis por distribución diamétrica dentro del área de influencia, se agruparon los árboles muestreados dentro de clases diamétricas. Los cuales se determinaron a partir de la diferencia entre el diámetro mayor y el diámetro menor, y dividiéndose en el número de intervalos. Al determinar el número de árboles por clase diamétrica se obtuvo la frecuencia absoluta, acumulada y relativa.

Estado sucesional

De acuerdo a los recorridos preliminares se seleccionaron los posibles estados sucesionales. Cada estado lo define la abundancia, el tipo de especies y sus alturas. A continuación en la

Tabla 2.23 se muestran los estados sucesionales posibles a encontrarse en el área de influencia del proyecto.

Tabla 2.23 Descripción de los estados de sucesión

<table>
<thead>
<tr>
<th>Estado Sucesional</th>
<th>Dosel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temprano</td>
<td>1 Capa, altura media menor a 10 m.</td>
<td>Arboles con pastos y suelo desnudo en áreas abiertas</td>
</tr>
<tr>
<td>Intermedio</td>
<td>2 Capas, altura media entre 10 y 20 m.</td>
<td>Capa superior de dosel compuesto por especies pioneras. Capa inferior compuesta por especies tolerantes a la sombra y de portes bajos</td>
</tr>
<tr>
<td>Tardío</td>
<td>2 Capas, Altura media mayor a 20 m.</td>
<td>Dosel dominante de grandes alturas, regeneración de especies tolerantes a la sombra, pocos claros de luz, superposición de copas en el dosel formando una capa continua.</td>
</tr>
</tbody>
</table>

Índices ecológicos

La diversidad de especies es un atributo de las comunidades medido por la heterogeneidad y la uniformidad de éstas. La diversidad se compone de dos elementos: el primero es la variación de especies y el segundo es la abundancia relativa de estas. Se evaluaron los principales índices reportados en la literatura: riqueza y diversidad de especies, dominancia y equidad.

Índice de riqueza de Margalef

El índice de Margalef relaciona el número de especies de acuerdo con el número total de individuos y se expresa con la Ecuación 2.13

\[D_{Mg} = (S - 1)/\ln N \]

Ecuación 2.13 Expresión matemática para hallar el índice de Margalef

Donde:

S: número de especies

N: número total de individuos

Índice de Menhinick

63 D. OLASCUAGA, J. MERCADO & L. SANCHEZ. Análisis de la vegetación sucesional en un fragmento de bosque seco tropical en el Tolu Viejo – Sucre (Colombia) 2016. Colombia Foresta. P. 23-40l

El Índice de diversidad de Menhinick se basa en la relación entre el número de especies y el número total de individuos observados, el cual aumenta al incrementar el tamaño de la muestra; se calcula con la Ecuación 2.14.

\[
Dmn = \frac{S}{\sqrt{N}}
\]

Ecuación 2.14 Ecuación para calcular el índice de Menhinick

Donde,

\(S \): número de especies

\(N \): número de individuos

Índice de Shannon

Este índice indica qué tan uniformes están representadas las especies (en abundancia) teniendo en cuenta todas las especies muestreadas y se expresa con la Ecuación 2.15.

\[
H' = \sum_{i=1}^{S} p_i \ln p_i
\]

Ecuación 2.15 Ecuación para calcular el Índice de Shannon

Donde:

\(S \): número de especies

\(p_i \): proporción de individuos encontrada en la \(i \)-ésima especie. En una muestra se desconoce el verdadero valor de \(p_i \), pero puede estimarse como se muestra en la Ecuación 2.16

\[
p_i = \frac{p_i}{N}
\]

Ecuación 2.16 Ecuación para hallar la proporción de individuos

El valor de este índice varía entre 1 y 5, aunque pueden presentarse excepciones en algunos ecosistemas que pueden superar el valor máximo.
Índice de dominancia de Simpson

Este índice se refiere a la probabilidad de que dos individuos de una comunidad infinitamente grande, tomados al azar, pertenezcan a la misma especie. Para comunidades finitas el índice se expresa mediante la expresión (Ecuación 2.17):

\[D = \sum \frac{n_i(n_i - 1)}{N(N - 1)} \]

Ecuación 2.17 Ecuación para calcular el índice de dominancia de Simpson

Donde,

ni: número de individuos de la i-ésima especie

N: total de individuos.

A medida que D incrementa, la diversidad decrece. Por ello el índice se expresa usualmente como 1-D, lo que asegura que el valor del índice se incremente con el aumento de la diversidad.

Regeneración natural

Para el análisis de la regeneración natural se utilizó la metodología propuesta por DuBois65, esta presenta una división detallada para la categoría de brinzales. La primera corresponde a los renuevos (R) individuos entre 0 y 30 cm de altura, la segunda corresponde a los plantones (U) que se subdividen en inferiores (U1), con alturas entre 30-150cm y superiores (U2), con alturas entre 150 – 300 cm. Una tercera categoría corresponde a establecidos (E) individuos con 300 cm de altura y e inferiores a 5 cm de DAP. Con la información capturada en cada unidad se determinan las existencias parciales (i.e.), lo que se expresa en forma generalizada como una proporción demográfica, en la que se requiere de una población inicial de 100 renuevos para llegar a un establecido, o en su defecto de 10 plantones para obtener el mismo resultado, si se cumple con esta condición el punto de muestreo o la parcela obtiene el valor máximo que es uno (1,0), lo cual quiere decir, que existe la máxima probabilidad que un individuo de la parcela llegue a convertirse en árbol adulto.

65 DuBois, J. Los tipos de inventarios empleados en el manejo de los bosques tropicales, por sistemas naturales y seminaturales. 1980
100 (R): 10 (U): 1 (E) = 1,0

Cuando no se cumple con esta condición, la parcela o el punto de muestreo toma el valor proporcional de acuerdo con la categoría de tamaño mejor representada, dicho resultado oscila entre cero y uno. Por ejemplo: en la parcela (i.e. 1.), los renuevos (R) tienen el mayor valor en la proporción (0,78), mientras que en la parcela (i.e. 2.) el valor de la proporción lo generan los plantones (U) con 0,80. En la parcela (i.e. 3.) la categoría de establecidos (E) es la que está mejor representada, por lo cual toma el valor máximo de la proporción (1,0).

i.e. 1. = 78(R): 5(U): 0(E) = 0,78

i.e. 2. = 78(R): 8(U): 0(E) = 0,80

i.e. 3. = 78(R): 8(U): 3(E) = 1,00

Las existencias (I.E.%), se calculan como el promedio de las existencias parciales (i.e.), expresado en porcentaje (Ecuación 2.18).

\[
I.E.% = \sum_{i=1}^{n} \frac{i.e.}{n} \times 100
\]

Ecuación 2.18 Ecuación para calcular el Índice de existencia

Donde:

I.E. = Índice de existencias total

i.e. = Existencias parciales para la parcela i

n = Número total de parcelas muestreadas

Análisis de fragmentación
El análisis de fragmentación de las coberturas se evaluó empleando el programa FRAGSTATS 3.3, donde se calcularon 8 métricas e índices descriptivos que se agrupan en las siguientes categorías: I) Composición, II) Configuración, III) Forma y IV) Diversidad (Tabla 2.24).

Tabla 2.24 Métricas e índices del paisaje

<table>
<thead>
<tr>
<th>CATEGORÍA</th>
<th>ÍNDICE</th>
<th>SÍMBOLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
<td>Área de la clase</td>
<td>CA/TA</td>
</tr>
<tr>
<td></td>
<td>Numero de parches</td>
<td>NP</td>
</tr>
<tr>
<td>Configuración</td>
<td>Distancia Euclidiana al vecino más cercano</td>
<td>ENN_MN</td>
</tr>
<tr>
<td></td>
<td>Índice de cohesión</td>
<td>COHESION</td>
</tr>
<tr>
<td>Forma</td>
<td>Índice medio de la forma</td>
<td>SHAPE_MN</td>
</tr>
<tr>
<td></td>
<td>Dimensión Fractal</td>
<td>FRAC_MN</td>
</tr>
<tr>
<td>Diversidad</td>
<td>Índice de uniformidad de Shannon</td>
<td>SHEI</td>
</tr>
<tr>
<td></td>
<td>Índice de diversidad de Shannon Wiener</td>
<td>SHDI</td>
</tr>
</tbody>
</table>

Fuente: Rutledge, D. 2003

- Área de la clase (CA>0): El área de una clase es una medida de la composición del paisaje; específicamente, qué parte del paisaje se compone de un tipo de cobertura en particular.

- Número de parches (NP>1): El número de parches de una clase es una medida simple de la subdivisión o fragmentación de la clase. Si bien el número de parches en una clase puede ser fundamentalmente importante para varios procesos ecológicos, a menudo tiene un valor interpretativo limitado porque no transmite información sobre el área, la distribución o la densidad de los parches.

- Distancia euclidiana al vecino más cercano (ENN>0): Mide la distancia en línea recta en metros entre el borde de un parche y el borde de su vecino más cercano de la misma clase.

- COHESIÓN: Mide el grado de agregación y la dominancia de las coberturas que conforman un paisaje determinado. En este sentido, es un indicador de la conectividad física de un paisaje o de un tipo de cobertura. Rango de 0 a 100; el valor se incrementa a medida que la agregación y agrupación de las coberturas aumentan.

66 McGarigal, K.; Cushman, S. A; Neel, M. C & Ene, E. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.

67 RUTLEDGE, D., Landscape indices as measures of the effects fragmentation: can pattern reflect process? DOC Science Internal Series 98. 27. 2003
- Índice de forma (SHAPE_MN>1): 1 cuando el parche es cuadrado y aumenta sin límite la forma del parche se vuelve más irregular.

- Índice de dimensión fractal (1<FRAC-MN<2): Valores próximos a 1 para formas con perímetros muy simples, como cuadrados, y próximos a 2 para formas con perímetros muy complejo muy irregulares.

- Índice de uniformidad de Shannon (0<SHEI<1): Valores próximos a 0 cuando la distribución del área entre los diferentes tipos de parches es cada vez más desigual, y valores próximos a 1 cuando la distribución del área entre los tipos de parches es perfectamente uniforme (es decir, las abundancias proporcionales son las mismas).

- Índice de diversidad de Shannon Wiener (SHDI>0): Valores próximos a 0 cuando el paisaje solo contiene 1 parche (es decir, sin diversidad). El valor del indicador aumenta a medida que aumenta el número de diferentes tipos de parches (es decir, la riqueza de parches) y/o la distribución proporcional de área entre los tipos de parches se vuelve más equitativa

 - Fauna

 A continuación se menciona la metodología empleada en el muestreo de cada uno de los componentes faunísticos terrestres, con el fin de establecer la abundancia, riqueza, índices ecológicos y estado de amenaza, entre otros aspectos, de las especies encontradas por unidad de cobertura presente en el área de influencia. La información recolectada en campo para cada grupo faunístico se consignó en plantillas de campo, las cuales se encuentran en el Anexo 5.2 medio biótico – fauna.

 - Herpetofauna

 La herpetofauna reúne el grupo de los anfibios y los reptiles, para la caracterización de este grupo en el área de influencia del proyecto, se utilizaron técnicas de muestreo de observación directa, siguiendo las metodologías y procedimientos descritos por Manzanilla y Péfaur⁶⁸ y

Angulo y editores69 (método VES – Visual Encounter Survey). Se realizaron los muestreos por cobertura y/o hábitat (unidad de muestreo) durante el día y la noche distribuidos en máximo cuatro (4) horas cada jornada. El esfuerzo de muestreo se calculó siguiendo a Carvajal et al.70 (Horas-Hombre-cobertura). Dependiendo del área de cada cobertura y/o hábitat se realizaron entre cuatro (4) y (8) horas de recorridos libres.

La identificación de especies se realizó in situ o con fotografías tomadas en campo y con la ayuda de las guías de Páez et al. (2002)71 y el trabajo de Rueda et al. (2004)72. Para clasificar taxonómicamente los lagartos y las serpientes se siguió a Ayala (1986)73 y Trujillo (2015)74 respectivamente. Se llegó hasta el mínimo nivel taxonómico posible. En el caso de los anfibios se prestó atención a los cantos de los machos para ubicar la fuente del sonido y capturar u observar al individuo o identificar la especie por el canto. Todos los ejemplares capturados fueron liberados en el mismo sitio de manera que no se realizaron colectas definitivas.

Los análisis de la comunidad de herpetos presente en el área se realizaron por unidad de cobertura muestreada. Así mismo, se encontraron los índices ecológicos para medir la diversidad alfa: riqueza de Margalef (Ecuación 2.13), dominancia de Simpson (Ecuación 2.17) diversidad de Shannon (Ecuación 2.15 Ecuación para calcular el Índice de Shannon), y equitabilidad de Pielou (Ecuación 2.19). Este último índice muestra la distribución de la abundancia de las especies dentro de la comunidad y sus valores fluctúan entre 0 y 1, donde los cercanos a cero indican que las especies no son igualmente abundantes y si los valores se acercan a uno expresa que las especies son igualmente abundantes.

70 CARVAJAL-COGOLLO, Juan E., CASTAÑO-MORA, Olga V., CÁRDENAS-ARÉVALO, Gladys., URBINA-CARDONA, José Nicolás. Reptiles de áreas asociadas a Humedales de la planicie del departamento de Córdoba, Colombia. En: Caldasia. Agosto, 2007. 29(2), 427-438
73 Ayala, S. 1986. Saurois de Colombia, lista actualizada y distribución de ejemplares colombianos en los museos. Caldasia 15: 71-75
\[J = \frac{H'}{H'_{\text{max}}} \]

Ecuación 2.19 Ecuación para calcular el índice de equitabilidad de Pielou

Dónde,

\[H'_{\text{max}} = \ln S \]

S = número de especies

Para completar los índices ecológicos se realizó un análisis de clasificación y ordenación, que mide la diversidad beta, usando el índice de similaridad de Bray Curtis. Los índices enunciados anteriormente se calcularon con soporte del software PAleontological STatistics (PAST Versión 3.20).

Adicionalmente, se identificaron y mapificaron a escala 1:5.000 las posibles rutas de desplazamiento de la herpetofauna dentro del área de influencia del proyecto. Por último, se consultó si las especies registradas eran endémicas o casi endémicas en el país\(^75\) y se verificó su estado de amenaza consultando la Resolución 1912 de 2017\(^76\), el libro rojo de anfibios\(^77\) y reptiles\(^78\) de Colombia, la lista de especies amenazadas de UICN\(^79\) y los Apéndices I, II y III de CITES\(^80\). A su vez, para dichas especies con información secundaria existente se describieron sus características ecológicas, entre ellas sus potenciales áreas de cría, reproducción y alimentación.

\(^76\) COLOMBIA. MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE. Resolución 1912 (15, septiembre, 2017). Por la cual se establece el listado de las especies silvestres amenazadas de la diversidad biológica colombiana continental y marino-costera que se encuentran en el territorio nacional, y se dictan otras disposiciones”. Bogotá, 2017. 38 p.

- Avifauna

Para la caracterización de la avifauna se siguió la metodología propuesta por Villareal et al.81, la cual consta de la detección visual de la fauna mediante la realización de recorridos aleatorios, por lo cual no se colectaron especímenes, y puntos fijos de observación en horas de mayor actividad de aves (entre 06:00 y las 10:30 y entre las 16:00 y las 18:30).

La identificación de especies se realizó in situ o con fotografías tomadas en campo llegando hasta el mínimo nivel taxonómico posible. Para el procesamiento y verificación de la taxonomía de este grupo se siguió la guía Colombia de Hilty y Brown (2001)82 y de Mc Mullan et al. (2010)83. Los análisis de la comunidad de aves presente en el área se realizaron por unidad de cobertura muestreada.

Para cada cobertura se calculó la riqueza y abundancia de especies, así mismo, se encontraron los índices ecológicos para medir la diversidad alfa: riqueza de Margalef (Ecuación 2.13), dominancia de Simpson (Ecuación 2.17) diversidad de Shannon (Ecuación 2.15), y equitabilidad de Pielou (Ecuación 2.19).

Para completar los índices ecológicos se realizó un análisis de clasificación y ordenación, que mide la diversidad beta, usando el índice de similaridad de Bray Curtis. Los índices enunciados anteriormente se calcularon con soporte del software PAleontological STatistics (PAST Versión 3.20). Adicionalmente, se identificaron y mapificaron a escala 1:25.000 las posibles rutas de desplazamiento de la avifauna dentro del área de influencia del proyecto.

Por otra parte, se establecieron los gremios tróficos a los que pertenecen las especies registradas así como el principal uso que se les da a las mismas84. También se establecieron

84 BirdLife International. Species factsheets. [en línea]. http://www.birdlife.org [citado el 08 de octubre de 2018]
cuáles de las especies registradas son especies migratorias85 y cuales están clasificadas como endémicas, casi endémicas y de interés en el país86,87. Finalmente, se verificó el estado de amenaza de las especies reportadas consultando la Resolución 1912 de 201788, el libro rojo de aves de Colombia89, la lista de especies amenazadas de UICN90 y los Apéndices I, II y III de CITES91. A su vez, para dichas especies con información secundaria existente se describieron sus características ecológicas, entre ellas sus potenciales áreas de cría, reproducción, alimentación y anidación.

- Mastofauna

Para realizar la caracterización de la mastofauna presente en el área de influencia del proyecto se tuvo en cuenta el área a intervenir. Se hicieron tres (3) charlas informales con pobladores de la zona para verificar la presencia de algunas especies en la zona, no se instalaron trampas de huellas por las condiciones de inundación del suelo. Adicionalmente, se instalaron cinco (5) trampas Tomahawk, las cuales fueron cebadas con una mezcla de maní, avena en hojuelas y esencia de vainilla y en algunos casos con sandías; cada trampa se instaló en cada cobertura en las horas de la tarde (a partir de las 5:00 pm) y se revisaron en la mañana siguiente (08:00 am).

Para el levantamiento de información de mamíferos pequeños, se utilizaron cinco (5) trampas tipo Sherman que fueron distribuidas en las diferentes coberturas. Las trampas se ubicaron con una separación aproximada de 10-15 m entre cada una, procurando cubrir los diferentes estratos del sitio de muestreo. Se situaron en sitios estratégicos y microhábitats como troncos

86 SALAMAN, Paul, DONEGAN, Thomas y CARO, David. Listado de Aves de Colombia. En: Conservación Colombiana. Mayo, 2009. no. 8, p. 3-79
90 UNIÓN INTERNACIONAL PARA LA CONSERVACIÓN DE LA NATURALEZA – UICN. La lista roja de especies amenazadas de la UICN. Op. cit
91 CONVENCIÓN SOBRE EL COMERCIO INTERNACIONAL DE ESPECIES AMENAZADAS DE FAUNA Y FLORA SILVESTRE – CITES. Lista de especies CITES. Op. cit.
caídos, base de árboles, ramas de árboles, follaje de ramas, cavidades formadas por las raíces, cerca de cuevas, en bordes de piedras, bordes de cuerpos de agua y en sendas.

Para los mamíferos voladores (murciélagos- orden Chiroptera), se emplearon redes de niebla. Se instalarán entre dos (2) y tres (3) redes de niebla de 12 m de largo por 2,25 m de alto y 30 mm de ojo de malla, por cobertura seleccionada. Las redes se abrieron en las horas de mayor actividad de los murciélagos (entre las 6:00 pm y las 9:00 pm). La determinación taxonómica se realizó con la ayuda de la guía de mamíferos terrestres y voladores de Colombia (Morales et al. 2004)92, la guía de fauna terrestre de Sánchez et al. (2016)93, la guía de identificación de los murciélagos de Suramérica (Díaz et al. 2016)94 y el manual de huellas de algunos mamíferos de Colombia (Navarro y Muñoz, 2000)95.

Para el post-procesamiento de las fotos obtenidas de las cámaras trampa se utilizó el software NAIRA III (Leyendo biodiversidad)96. Esta herramienta permitió clasificar las imágenes automáticamente identificando los animales presentes en cada fotografía y separando aquellas imágenes en las cuales no hay presencia de fauna, sugiriendo hasta nivel de género los organismos captados.

Adicionalmente, se realizaron recorridos en cada una de las coberturas en busca de mamíferos o rastros de ellos, considerando como rastros las huellas, las madrigueras y las heces, entre otros.

Finalmente, se identificaron y mapificaron a escala 1:5.000 las posibles rutas de desplazamiento de la mastofauna dentro del área de influencia del proyecto. Por último, se consultó si las especies registradas eran endémicas o casi endémicas en el país y se verificó su estado de amenaza consultando la Resolución 1912 de 201797, el libro rojo de mamíferos98 la lista de

94 Díaz, M., Solari, S., Aguirre, L.F., Aguiar, L.M.S. y Barquez, L.M. 2016. Clave de identificación de los murciélagos de Suramérica. Publicación Especial N°2
especies amenazadas de UICN98 y los Apéndices I, II y III de CITES100. A su vez, para dichas especies con información secundaria existente se describieron sus características ecológicas.

2.3.3.2.2 Ecosistemas acuáticos

Con el fin de conocer la flora y fauna presente en el ecosistema acuático del área de influencia del proyecto en cuestión, AQUALAB CONSULTING S.A.S, contrató los servicios de SGS COLOMBIA S.A.S., para llevar a cabo la caracterización del perifiton, macrófitas, macroinvertebrados bentónicos e ictiofauna. Esta caracterización se realizó en una (1) estación de muestreo (MAGNA SIRGAS Origen OESTE: 1.038.446,71 E – 1.368.890,92N, Figura 2.9) el día 7 de mayo de 2019. Es de resaltar que SGS COLOMBIA S.A.S hizo este muestreo siguiendo la metodología acreditada por el IDEAM mediante la Resolución 2088 de 2018101 y por la Autoridad Nacional de Licencias Ambientales – ANLA mediante Resolución 01683 de 2017102 (Anexo 5.2 Medio Biótico - Hidrobiológicos). A continuación se presenta la metodología emplazada para cada grupo florístico y faunístico caracterizado.

99 UNIÓN INTERNACIONAL PARA LA CONSERVACIÓN DE LA NATURALEZA – UICN. La lista roja de especies amenazadas de la UICN. Op. cit

100 CONVENCIÓN SOBRE EL COMERCIO INTERNACIONAL DE ESPECIES AMENAZADAS DE FAUNA Y FLORA SILVESTRE – CITES. Lista de especies CITES. [en línea] http://checklist.cites.org/#/es [citado el día de 05/15/2018].

101 COLOMBIA. MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE. INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES – IDEAM. Resolución 2088 (4, septiembre, 2018). Por la cual se levanta la suspensión de la acreditación a la sociedad SGS COLOMBIA S.A.S. (LABORATORIO BOGOTÁ), para producir información cuantitativa física, química y biológica, para los estudios o análisis ambientales requeridos por las Autoridades Ambientales competentes y de carácter oficial, relacionada con la calidad del medio ambiente y de los recursos naturales renovables, y se dictan otras disposiciones.

Para el muestreo de la comunidad perifítica se escogieron varios sustratos (roca, hoja y tronco), sumergidos o que estuvieran en constante contacto con el agua, para raspar la biopelícula que se encontraba adherida a ellos. El raspado fue realizado con un cepillo de dientes, abarcando un área de 72 cm² (Fotografía 2.1). La muestra colectada fue envasada en un frasco ámbar de 60 mL, se tiñó con solución de Lugol, se fijó con solución de Transeau y posteriormente se rotuló para su identificación.
En el laboratorio las muestras fueron homogenizadas al movimiento 15 veces consecutivas y la metodología utilizada de acuerdo a la APHA-AWWA-WPCF, en el Standard Methods Ed. 22104, se modificó permitiendo un mejor manejo de los datos para la aplicación de la técnica de análisis de una alícuota. Para este análisis se utilizó una micropipeta transferpette de 10 – 100 µL estableciendo un volumen de 70 µL para cada alícuota. Una vez ubicada la muestra bajo el microscopio óptico compuesto se realizó un barrido en zigzag en el aumento de 40X, de manera que abarcara la mayor área posible de la alícuota, contando tantas alícuotas como sea necesario (mínimo 10 alícuotas) hasta que la curva de riqueza acumulada se estabilice. Para la identificación de las muestras se utilizó literatura especializada, entre ella Ramírez105, Streble y Krauter106, Whitford y Schumacher107 y APHA-AWWA-WPCF108.

Para evaluar el ensamblaje de la comunidad perifítica se emplearon los índices ecológicos de riqueza de Margalef (Ecuación 2.13), de diversidad de Shannon (Ecuación 2.15), de dominancia

\begin{center}
103 SGS COLOMBIA S.A.S., ENVIRONMENT HEALTH AND SAFETY. Informe de caracterización hidrobiológica área de influencia de la variante transversal de Las Américas. 2019. 53 p. \\
105 RAMÍREZ, J. Fitoplancton de agua dulce: aspectos ecológicos, taxonómicos y sanitarios. Medellín, Editorial Universidad de Antioquia. 2000. 207 p. \\
\end{center}
La interpretación del índice de riqueza de Margalef se dio teniendo en cuenta que valores por debajo de 2 son resultado de la baja biodiversidad y valores superiores a 5 de alta diversidad. La interpretación del índice de diversidad de Shannon se dio teniendo en cuenta que valores entre 0,0 – 1,5 nats/individuo demuestran baja diversidad (aguas muy contaminadas), entre 1,5 – 3,0 nats/individuo es diversidad media (aguas medianamente contaminadas) y entre 3,0 - 5,0 nats/individuo, alta diversidad o aguas muy limpias. La interpretación del índice de dominancia de Simpson se dio teniendo en cuenta que este índice oscila entre 0 y 1, indicando que cuando tiende a 0 la dominancia es baja y cuando tiende a 1 la dominancia alcanza su valor máximo. La interpretación del índice de equitabilidad de Pielou se dio teniendo en cuenta que este índice oscila entre 0 y 1 y cuando los valores son cercanos a 1 quiere decir que las especies presentan una abundancia similar.

Por último, la serie de números de Hill se refiere a una serie que permiten calcular el número efectivo de especies en una muestra, es decir, una medida del número de especies cuando cada especie es ponderada por su abundancia relativa (Ecuación 2.20).

\[
NA = \sum (P_i)^{1/(1-A)}
\]

Ecuación 2.20 Ecuación para calcular la serie de números de Hill

De toda la serie de números de Hill, los más importantes son N0, N1 y N2, donde N0 corresponde al número total de especies (S), N1 corresponde al número de especies abundantes (\(e^H\)) y N2 corresponde al número de especies muy abundantes (1/\(\lambda\)). El valor de N1 y N2 puede ser difícil de interpretar, por lo que para ello se debe tener en cuenta que conforme aumenta el número de especies se da menos peso a las especies raras y se obtienen valores más bajos.

• Macrófitas

La toma de datos para macrófitas se realizó por medio de la utilización de una línea transecto de 10 m, la cual se extendió a lo largo de los parches de donde se observó la presencia de macrófitas. Luego se ubicó un cuadrante de 50 x 50 cm en cada metro e intercalado a lo largo de la cuerda. Se registró el porcentaje de cobertura y la riqueza de cada especie por cuadrante para finalmente poder determinar una cobertura total de los organismos (Fotografía 2.2)\(^\text{112}\). Una vez terminada la toma de los datos se colectó un organismo por especie procurando tomarlo por completo (raíz, tallo, hojas y flores si es posible). Dicho ejemplar se colocó sobre papel periódico y fue rociado con solución Transeau, para finalmente ser dispuesto en bolsas de cierre hermético, prensado y rotulado.

![Fotografía 2.2 Procedimiento de muestreo de macrófitas](image)

Fuente: SGS COLOMBIA S.A.S., Environmental, Health and Safety\(^\text{113}\)

El procedimiento para el análisis de las macrófitas estuvo basado en la propuesta APHA-WWA-WPCF\(^\text{114}\) donde las plantas fueron sometidas a un lavado con agua de la llave para eliminar el exceso de preservante y de sedimento, luego se colocaron sobre una bandeja con agua para resaltar cualquier estructura necesaria para su identificación. Se examinó cada individuo con la

\(^{113}\) SGS COLOMBIA S.A.S., ENVIRONMENT HEALTH AND SAFETY. Op. cit

ayuda de literatura especializada y claves taxonómicas, entre ellas Brünner y Beck15, Cirujano et al16, Hiscock17, García-Murillo et al18 y Smagula y Connor19.

- Macroinvertebrados bentónicos

Con el objetivo de poder colectar una mayor información biológica con respecto a esta comunidad, el muestreo se realizó con la ayuda de una red Surber de 250 µm de diámetro de poro y de un área de 0,09 m2, con la cual se tomó un área total de 0,72 m2. La red Surber se ubicó en contra de la corriente y se removió el sustrato con la mano haciendo que los organismos flotaran, entraran a la red por efecto de la corriente y quedaran atrapados en ella (Fotografía 2.3). Los organismos que se colectaron se dispusieron en bolsas resellables, a las que posteriormente se les adiciona solución Transeau para la preservación y finalmente ser rotuladas para su identificación.

Fotografía 2.3 Procedimiento de muestreo de macroinvertebrados bentónicos

Fuente: SGS COLOMBIA S.A.S., Environmental, Health and Safety120

17 HISCOCK, P. Encyclopedia of Aquarium plants. Ed Borron's Educational Series, Inc. 2003. 205 p
Para analizar esta comunidad cada muestra fue trabajada de manera independiente sometiéndolas a un lavado con agua sobre unos tamices de 250 µm y 710 µm cuyo objetivo era separar los organismos de las demás impurezas (material vegetal y sedimentos). Los organismos fueron sometidos a tinción con solución de Rosa de Bengala durante mínimo 1 hora para facilitar la separación, la cual se llevó a cabo en cajas Petri bajo el estereoscopio. Una vez separados los organismos se identificaron utilizando literatura especializada, entre ella Liévano y Ospina121, Roldán122, Roldán123, Domínguez y Fernández124 y Leal125.

Por último, para evaluar el ensamblaje de la comunidad de macroinvertebrados bentónicos se emplearon los índices ecológicos de riqueza de Margalef (Ecuación 2.13), de diversidad de Shannon (Ecuación 2.15), de dominancia de Simpson (Ecuación 2.17), de equitabilidad de Pielou (Ecuación 2.19) y la serie de números de Hill (Ecuación 2.20)126.

- Ictiofauna

La caracterización de peces se llevó a cabo mediante la búsqueda de los mismos por 60 minutos empleando una red de mano (Fotografía 2.4). Los organismos capturados fueron fotografiados, siempre con la cabeza hacia la izquierda, colectando únicamente un (1) ejemplar por taxón. Los ejemplares colectados se fijaron con solución formol al 10% y se rotularon. Los organismos fotografiados fueron sometidos a un análisis minucioso con la ayuda de literatura especializada, entre ella Lasso et al127 y Maldonado-Ocampo et al128.

120 SGS COLOMBIA S.A.S., ENVIRONMENT HEALTH AND SAFETY. Op. cit
2.3.3.2.3 Ecosistemas estratégicos, sensibles y/o áreas protegidas

Para identificar la presencia de ecosistemas estratégicos, sensibles y/o áreas protegidas en el área de estudio, se utilizó la plataforma del Sistema de Información de Alertas Tempranas TREMARCTOS COLOMBIA 3.0 (escala 1:250.000)130, donde se superpuso el área de estudio y el área de influencia del proyecto y las categorías de manejo que conforman el Sistema Nacional de Áreas Protegidas (SINAP) contenidas en el Decreto 2372 de julio de 2010 (SIDAP, SIRAP y SILAP) del Ministerio de Ambiente y Desarrollo Sostenible.

2.3.3.3 Medio socioeconómico

A continuación se describe la aproximación metodológica a través de la cual se realizó el levantamiento de información general para la elaboración de la caracterización de las unidades territoriales mayores y menores de interés para el proyecto. La apuesta por entender la realidad de cada contexto demanda una mirada integral, y por tanto, el uso de técnicas variadas que

129 SGS COLOMBIA S.A.S., ENVIRONMENT HEALTH AND SAFETY. Op. cit
logren atajar la complejidad de la misma y que faciliten un ejercicio de triangulación metodológica que garantice la integralidad del enfoque.

En este sentido, cabe agregar que la triangulación de los datos generados a partir de las diferentes actividades que se proponen en el presente aparte, más allá de buscar corroborar los hallazgos, redundará en la elaboración de una lectura más amplia, enriqueciendo la línea base del área de estudio antes de la ejecución del proyecto, y facilitando el posterior desarrollo de la identificación y evaluación de los impactos ambientales que se generan a raíz de su ejecución. Esto, a partir del uso de fuentes primarias y secundarias de información y la aplicación de métodos cualitativos y cuantitativos de trabajo. Cabe agregar que cada una de las actividades propuestas adopta un enfoque participativo que involucra y cuenta con el acompañamiento de la población de estudio en cada una de sus etapas.

A continuación se describen cada uno de los momentos que se adelantaron en la elaboración del Estudio de Impacto Ambiental para el medio socioeconómico. En primer lugar se encuentra la información y participación de las comunidades en el apartado de lineamientos de participación. En lo que sigue, se describen los insumos utilizados para generar una aproximación a las diferentes componentes y factores que integran este medio, entre los cuales se contempla la dinámica poblacional y económica de las unidades territoriales, la cobertura y calidad de los servicios públicos y sociales existentes, las formas de organización e interacción política y los aspectos culturales de la población ubicada en el área de influencia del proyecto, entre otros.

2.3.3.3.1 Revisión documental

La información presentada es obtenida a través de revisión documental de fuentes de orden nacional como el Departamento Administrativo Nacional de Estadística –DANE; del ámbito departamental, la Gobernación de Antioquia y demás entidades adscritas a ésta; y en la esfera municipal, la administración de Turbo con sus respectivas secretarías y dependencias de la alcaldía.

Así mismo se consultaron otras fuentes valiosas para la comprensión de las diversas relaciones construidas en el territorio en tanto ofrecieron una perspectiva desde la investigación y la organización comunitaria. Entre los documentos consultados se encuentran el Plan de
Desarrollo Departamental, el Plan de Ordenamiento Territorial y el Plan de Desarrollo Municipal, y demás textos académicos publicados por entidades del Estado, universidades y organizaciones sociales con presencia en el territorio estudiado. (Ver Tabla 2.25)

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Fuentes de información consultadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensión demográfica</td>
<td>Estudios académicos, Departamento Administrativo Nacional de Estadísticas- DANE, Alcaldía de Turbo, Plan de Ordenamiento Territorial-POT-, Plan de Desarrollo Departamental, Planes de Desarrollo municipal, Anuario estadístico de Antioquia, Cámara de Comercio de Urabá</td>
</tr>
<tr>
<td>Dimensión espacial</td>
<td></td>
</tr>
<tr>
<td>Dimensión económica</td>
<td></td>
</tr>
<tr>
<td>Dimensión cultural</td>
<td></td>
</tr>
<tr>
<td>Dimensión político administrativa</td>
<td></td>
</tr>
<tr>
<td>Tendencias del desarrollo</td>
<td></td>
</tr>
</tbody>
</table>

2.3.3.3.2 Levantamiento de información primaria

Para la obtención de información primaria se utilizó una metodología anclada en principios de investigación cualitativa, con la adopción de algunas herramientas de la investigación cuantitativa, que permita el reconocimiento de las diferentes comunidades y su entorno.

Para la obtención de información primaria se utilizó una metodología anclada en principios de investigación cualitativa, con la adopción de algunas herramientas de la investigación cuantitativa, que permita el reconocimiento de las diferentes comunidades y su entorno. Es necesario precisar que, con el fin de evitar el desgaste de las comunidades, se buscó optimizar el levantamiento de información primaria para dos proyectos complementarios, cuyas áreas de influencia coincidían en el territorio: VÍA TRANSVERSAL DE LAS AMÉRICAS - NUEVA COLONIA - VARIANTE DE NUEVA COLONIA y ESTUDIO DE IMPACTO AMBIENTAL PARA LA LÍNEA DE CONEXIÓN SUBESTACIÓN NUEVA COLONIA-PUERTO ANTIOQUIA. Esta estrategia fue puesta en conocimiento de las comunidades y no incidió en la cantidad y/o calidad de los datos compilados, así mismo, se dio a conocer a los interlocutores que la mencionada estrategia de trabajo de campo no modificaba los análisis para la delimitación de una u otra área de influencia.

Adicionalmente se realizaron recorridos de campo, en los se identificó la existencia de infraestructura de servicios públicos y sociales, así como infraestructura para el desarrollo de actividades económicas propias de la comunidad.
2.3.3.3 Elaboración de informe

Una vez recolectada la información primaria y secundaria en campo, se realizó el procesamiento de los datos, de tal forma que permitieron describir de forma cuantitativa y cualitativa las características del medio social. El procesamiento de estos datos permitió identificar los impactos potenciales sobre cada una de las comunidades con el fin de formular las medidas de manejo para atenderlos. Esta información se validará con la población objeto de estudio. La aplicación de las diferentes metodologías, permitieron finalmente la recolección de información primaria y secundaria para la construcción teórica del medio social en el presente estudio, así como el acercamiento y contacto con los diferentes actores involucrados en su desarrollo.

2.3.3.4 Participación y socialización con las comunidades

El desarrollo de los lineamientos de participación social promueven la práctica de los derechos y deberes que son otorgados a las comunidades, organizaciones, líderes, autoridades locales y regionales por medio de la legislación Colombiana, específicamente para el conocimiento de los alcances de los proyectos que se proponen realizar en el área, los cuales consideran estas comunidades grupos de interés.

Las premisas de estos lineamientos se sustentan en el derecho fundamental de los agentes sociales a participar y ser consultados para la toma de decisiones que se deben realizar en procesos empresariales y estatales, en los que la comunidad pueda verse afectada, de manera positiva o negativa, en el área social, económica, política o ambiental.

Tal y como lo describen los términos de referencia para la elaboración de esta clase de estudios ambientales, los lineamientos de participación se desarrollaron en tres (3) fases, complementarias entre sí, las cuales buscan brindar a los líderes, comunidad, autoridades municipales y ambientales información completa acerca de las actividades del Proyecto como se muestra a continuación:

Primera fase (Reunión de inicio): debe realizarse antes del inicio de la fase de recolección de información primaria, se debe socializar la información relacionada con las características técnicas, alcance y actividades del proyecto y el alcance del estudio a desarrollar.
Segunda Fase (Taller de evaluación de impactos): esta fue programada durante la elaboración del EIA, tuvo como principales temas la socialización del proyecto y sus implicaciones, con información referente a los alcances, componentes, etapas, actividades, área de influencia, entre otros. Para ello se realizó un taller en el que las comunidades participaron con el fin de identificar los impactos y medidas de manejo que pueden ser incluidos en el Plan de Manejo Ambiental, así como un Taller de Servicios Ecosistémicos

Tercera Fase (Reunión de presentación de resultados EIA): La tercera reunión se programó una vez se finalizó el Estudio de Impacto Ambiental con el fin de socializar los resultados del mismo, teniendo en cuenta que se ha tenido un proceso de participación con las comunidades y autoridades durante su elaboración y que estos han aportado en su construcción, se informa el resultado del mismo antes de la radicación del mismo ante la Autoridad Ambiental.

Para el desarrollo de los encuentros señalados, fue necesaria la realización de las siguientes actividades:

✓ Planificar la logística necesaria para las actividades
✓ Ofrecer espacios idóneos para la socialización y participación
✓ Realizar convocatorias a través de correspondencia, correo electrónico y llamadas telefónicas.
✓ Desarrollo de metodología específica para cada uno de los encuentros que se realizaron atendiendo al momento de la elaboración del estudio y las características de las comunidades previamente identificadas
✓ Documentar el desarrollo de los encuentros a través de actas levantadas, soporte de inquietudes manifestadas, listados de asistencia, registro fotográfico y fílmico

2.3.3.3.5 Componente demográfico

La información se levantó a través de documentos oficiales e instrumentos de ordenamiento territorial, como es el caso de los Planes de Desarrollo Municipal vigentes y anteriores, los Planes Zonales, los Planes de Ordenamiento Territorial – POT- y Planes Básicos de Ordenamiento Territorial – PBOT –; así como instrumentos de planeación y manejo de los recursos naturales, como los Planes de Manejo y Ordenamiento de Cuencas Hidrográficas; bibliografía académica; fuentes de producción y difusión de estadísticas y sistemas de
indicadores a nivel nacional y regional, como el DANE, los Anuarios Estadísticos de la Secretaría de Planeación e informes de la Secretaría de Salud. Finalmente, se adelantó una revisión de medios virtuales y físicos donde se encontró información relevante y general para el componente demográfico.

Cabe aclarar que las fuentes mencionadas se utilizaron, también, para la construcción de los demás componentes y factores.

2.3.3.3.6 Componente espacial

La principal herramienta para analizar este componente fue la utilización de las fuentes de información secundaria. El acervo documental utilizado como base para para analizar este componente contempló los documentos técnicos enunciados más arriba para extraer información general de las unidades territoriales. Como ejercicio complementario, se acudió a las distintas fuentes oficiales de orden regional para actualizar dicha información. Como fuentes adicionales, se hace referencia a los Planes de Movilidad, las Encuestas de Calidad de Vida y a las fichas territoriales del Departamento Nacional de Planeación.

2.3.3.3.7 Componente económico

Para dar cumplimiento a los términos de referencia en cuanto a la elaboración de un panorama general de la dinámica económica de las unidades territoriales de interés, se recopiló información de varias de las fuentes secundarias ya mencionadas, especialmente los documentos oficiales e instrumentos de ordenamiento territorial, como es el caso de los Planes de Desarrollo Municipal y las fuentes de producción y difusión de estadísticas y sistemas de indicadores a nivel nacional y regional, como el DANE, los Anuarios Estadísticos de la Secretaría de Planeación y las fichas de caracterización territorial del DNP. Esta información se complementa con datos extraídos del Censo Nacional Agropecuario, informes de las Cámaras de Comercio, información elaborada en documentos académicos, así como las herramientas digitales oficiales disponibles, como los geovisores municipales MapGIS5 y la información Cartográfica del Instituto Geográfico Agustín Codazzi – IGAG. Dicha información fue procesada y analizada de tal forma que sirvió como principal insumo para dar cuenta de la distribución de la tierra, las principales actividades productivas y económicas, la caracterización del mercado laboral y los diferentes polos de desarrollo de las unidades territoriales.
2.3.3.8 **Componente cultural**

Para la construcción del componente cultural se utilizaron, en un primer momento, fuentes de información secundaria, tales como Planes de Desarrollo Municipal y Anuarios Estadísticos.

2.3.3.9 **Componente arqueológico**

El Diagnóstico y Plan de Manejo Arqueológico a formular, se traza como objetivo la realización de una prospección arqueológica sistemática en las zonas donde se realizará el proyecto, con la intención de identificar la existencia de yacimientos arqueológicos, definir para ellos una asociación cultural y establecer un Plan de Manejo.

En la presente propuesta metodológica se distinguen cinco fases, en donde se establecen las actividades a desarrollar, y cuáles serán los instrumentos o recursos necesarios para llevar a cabo tales labores.

- **Actividades a desarrollar**

 Zonificación Arqueológica preliminar

La zonificación arqueológica preliminar es una herramienta que permite generar a los investigadores un mapeo del potencial arqueológico existente en las zonas donde se pretenden desarrollar intervenciones arqueológicas. Esta información se elabora a partir de los datos obtenidos en estudios anteriores donde se referencian diversos tipos de yacimientos arqueológicos, o siguiendo determinantes tales como recursos naturales, aspectos fisiográficos, entre otros, que sean indicativos de posibles asentamientos humanos prehispánicos.

 Trabajo de campo o prospección arqueológica

Las actividades de prospección están encaminadas a identificar por medio del reconocimiento de una zona determinada, la presencia de vestigios arqueológicos, así como su clasificación y estado de conservación. Para el presente caso se propone efectuar una prospección mediante un muestreo espacial sistemático diseñado a través del SIG, con pozos de sondeo distanciados para abarcar la totalidad de las áreas a intervenir.
Laboratorio

Las actividades de laboratorio se orientarán a dar un procesamiento básico a la información obtenida en campo, de tal forma que adquiera un nivel de ordenamiento espacial y cronológico suficiente para emprender los análisis que interesan al cumplimiento de los objetivos específicos y las preguntas de investigación.

Participación y divulgación de los resultados del estudio

Luego del procesamiento de la información y en cumplimiento con los requerimientos para la difusión de los hallazgos, se presentarán los resultados de la caracterización del componente arqueológico ante todas las comunidades que hacen parte de los grupos de interés para el presente EIA.

Elaboración del informe final

La elaboración del informe final del proyecto irá encaminada hacia la consolidación de un documento que dé cuenta de los antecedentes, procedimientos, resultados de la investigación campo y las medidas de manejo a implementar al momento de ejecutar las obras que se plantea licenciar. Finalmente se remitirá el informe final al ICANH para su aprobación.

2.3.3.3.10 Componente político – organizativo

Para dar cumplimiento a los términos de referencia en cuanto a la elaboración de un panorama general de la dinámica político-organizativa en las unidades territoriales de interés se acudió principalmente a fuentes secundarias, entre ellas, las páginas web de la alcaldía y la Registraduría Nacional del Estado Civil, donde se encontró información relevante y general para el componente, los Planes de Desarrollo Municipal vigentes y el Departamento Nacional de Planeación.

2.3.3.3.11 Tendencias de desarrollo

Siguiendo la directriz establecida en los términos de referencia, el análisis integral de las tendencias del desarrollo se construyó con base en el resultado de la articulación de los aspectos más relevantes examinados en los diferentes componentes y de su cruce con los documentos oficiales e instrumentos de ordenamiento territorial, como son los Planes de...
Desarrollo Municipal vigentes y los Planes de Ordenamiento Territorial – POT- y Planes Básicos de Ordenamiento Territorial – PBOT

2.3.3.3.12 Información sobre población a reasentar

El presente proyecto no contempla la formulación de una estrategia de reasentamiento poblacional, teniendo en cuenta que las unidades sociales del área de intervención no cumplen con los parámetros reglados en la Resolución 077 de 2012 para dar aplicación a un plan de reasentamiento, sino que serán objeto de un proceso de adquisición predial de acuerdo con la normatividad. De esta forma teniendo como base la Resolución 545 de 2008 los factores sociales y el valor de los mismos, ayudarán a mitigar los impactos generados con el desarrollo del proyecto.

2.3.4 Servicios ecosistémicos

Los servicios ecosistémicos se definen como los beneficios que los seres humanos obtienen directa o indirectamente de los ecosistemas y su contribución al bienestar de las poblaciones que depende de las características de los ecosistemas y de la capacidad humana para extraer recursos y servicios de ellos\(^{131}\).

Estos servicios incluyen los bienes o recursos naturales como el agua o los alimentos, los procesos ecosistémicos que regulan las condiciones en los que los humanos y las demás especies habitan, como la regulación del clima y control de la erosión, la contribución de los ecosistemas a las experiencias que benefician directa o indirectamente a las sociedades, como el sentido de pertenencia o la recreación y los procesos ecológicos básicos que permiten que se provean los anteriores\(^{132}\).

El concepto de servicio ecosistémico además considera el beneficio que distintos actores o sectores de la sociedad reciben de los ecosistemas, así como las complejas interacciones tanto positivas como negativas entre servicios y actores o sectores de la sociedad. En este contexto,

al hablar de servicios ecosistémicos hacia la sociedad se enfatiza la interdependencia que existe entre sistemas ecológicos y sistemas sociales.133

En términos generales se pueden identificar cuatro tipos de SE: los servicios de aprovisionamiento (bienes), los de regulación, los culturales que afectan directamente a las personas y los servicios de soporte necesarios para mantener los otros servicios.134 En la Tabla 2.26 se presenta la definición de cada uno.

Tabla 2.26 Tipos de servicios ecosistémicos

<table>
<thead>
<tr>
<th>Tipo de servicio ecosistémico</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprovisionamiento</td>
<td>Constituidos por el conjunto de bienes y productos que se obtienen de los ecosistemas como alimentos, fibras, maderas, leña, agua, suelo, recursos genéticos, pieles, mascotas, entre otros.</td>
</tr>
<tr>
<td>Regulación</td>
<td>Los servicios de regulación son los beneficios resultantes de la regulación de los procesos ecosistémicos, incluyendo el mantenimiento de la calidad del aire, la regulación del clima, el control de la erosión, el control de enfermedades humanas y la purificación del agua.</td>
</tr>
<tr>
<td>Culturales</td>
<td>Son los beneficios no materiales obtenidos de los ecosistemas, a través del enriquecimiento espiritual, belleza escénica, inspiración artística e intelectual, el desarrollo cognitivo, la reflexión, la recreación y las experiencias estéticas.</td>
</tr>
<tr>
<td>Soporte</td>
<td>Los servicios ecosistémicos de soporte son servicios y procesos ecológicos necesarios para el aprovisionamiento y la existencia de los demás servicios ecosistémicos. Estos servicios se evidencian a escalas de tiempo y espacio mucho más amplias que los demás, ya que incluyen procesos como la producción primaria, la formación del suelo, la provisión de hábitat para especies, el ciclado de nutrientes, entre otros.</td>
</tr>
</tbody>
</table>

Para caracterizar los servicios ecosistémicos presentes en el área de estudio se realizó el siguiente procedimiento metodológico.

2.3.4.1 Revisión de fuentes de información secundaria

Durante esta etapa, se recopiló la información secundaria existente para el área de estudio, como: cartografía temática, documentos, informes y publicaciones que se utilizaron como referente para realizar el diagnóstico preliminar de los servicios ecosistémicos. Además, se consultó otras fuentes bibliográficas como los Planes de Ordenamiento Territorial (POT) de los municipios del área de influencia.

133 Ibíd., p.1305

2.3.4.2 Identificación de los ecosistemas presentes en el área de influencia del proyecto

Con el fin de identificar los ecosistemas intervenidos y naturales en el área de influencia se tomó la información contenida en la caracterización biótica del presente Estudio de Impacto Ambiental, en el cual se verificaron las coberturas asociadas en las salidas de campo.

2.3.4.3 Fase de campo

Para la obtención de la información referente a servicios ecosistémicos por parte de la comunidad local, se realizaron dos talleres de servicios ecosistémicos con las poblaciones del área de influencia del proyecto, los talleres estuvieron enfocados a la identificación de percepciones y elementos relacionados con los servicios ecosistémicos que la comunidad reconoce en su entorno.

Durante cada taller se le solicitó a cada persona que calificara su grado de dependencia (Tabla 2.27) según los servicios ecosistémicos identificados, para esto se agruparon las coberturas en los siguientes ecosistemas: cultivos, pastos, quebrada, río, mar, bosque y rastrojo.

<table>
<thead>
<tr>
<th>Dependencia alta</th>
<th>Los medios de subsistencia de la comunidad dependen directamente del servicio ecosistémico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencia media</td>
<td>La comunidad se beneficia del servicio ecosistémico pero su subsistencia no dependen directamente del mismo</td>
</tr>
<tr>
<td>Dependencia baja</td>
<td>La comunidad se beneficia del servicio ecosistémico pero su subsistencia no dependen directa ni indirectamente del mismo; existen múltiples opciones alternativas para el aprovechamiento del servicio ecosistémico</td>
</tr>
</tbody>
</table>

Fuente: ANLA, 2015\(^{135}\)

2.3.4.4 Impacto y dependencia del proyecto sobre los servicios ecosistémicos

Para determinar el nivel de impacto que el proyecto presentaría sobre los servicios ecosistémicos se tuvo en cuenta la evaluación de impactos desarrollada en el presente estudio con un rango de bajo, medio y alto; además, se determinó el nivel de dependencia que se tendría sobre éstos teniendo en cuenta los siguientes criterios y la información recopilada en el capítulo de demanda, uso, aprovechamiento y/o afectación de recursos naturales:

• **Dependencia alta:** Las actividades que hacen parte integral y central del proyecto requiere directamente de este servicio ecosistémico.

• **Dependencia media:** Algunas actividades secundarias asociadas al proyecto dependen directamente de este servicio ecosistémico pero podría ser reemplazado por in insumo alternativo.

• **Dependencia baja:** Las actividades principales o secundarias no tienen dependencia directa con el servicio ecosistémico.

Para identificar si el impacto del proyecto sobre los servicios ecosistémicos es alto, medio o bajo se utilizó la equivalencia que se muestra en Tabla 2.28.

Tabla 2.28 Nivel de impacto que el proyecto tiene sobre los servicios ecosistémicos

<table>
<thead>
<tr>
<th>Tipo de impacto negativo identificado</th>
<th>Equivalencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severo y crítico</td>
<td>Alto</td>
</tr>
<tr>
<td>Moderado</td>
<td>Medio</td>
</tr>
<tr>
<td>Irrelevante</td>
<td>Bajo</td>
</tr>
</tbody>
</table>

Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019

2.3.5 Zonificación ambiental

La zonificación ambiental es una herramienta metodológica de planificación que permite la diferenciación espacial del área de estudio y definir la sensibilidad ambiental del área en su condición sin proyecto.

Partiendo de la caracterización ambiental del área de influencia (AI) se identificaron zonas homogéneas, las cuales se conformaron a partir de la integración de diferentes criterios de los medios abiótico, biótico y socioeconómico. Se entiende como criterios aquellos atributos que caracterizan el ambiente, los cuales pueden expresarse en forma cualitativa, cuantitativa y cartográfica, describiendo la situación general del área de influencia. Los criterios se construyeron teniendo en cuenta el análisis de las cualidades del medio que expresan su susceptibilidad ante fenómenos naturales y antrópicos.

Para la selección de los criterios se tuvieron en cuenta las siguientes unidades
• Áreas de especial importancia ecológica: “tales como áreas naturales protegidas, reservas de la sociedad civil, distritos de manejo integrado, ecosistemas sensibles, rondas hidrográficas, corredores biológicos, presencia de zonas con especies endémicas, amenazadas (en peligro, en peligro crítico y vulnerables) de acuerdo con la Resolución número 0192 de 2014 o aquella norma que la modifique, sustituya o derogue, áreas de importancia para cría, reproducción, alimentación y anidación, y zonas de paso de especies migratorias”.

• Áreas de recuperación ambiental: “tales como áreas erosionadas, de conflicto por uso del suelo o contaminadas”136.

• Áreas de riesgo: “tales como áreas susceptibles a deslizamientos e inundaciones”137.

• Áreas de producción económica: “tales como ganaderas, agrícolas, mineras, pesqueras, entre otras”138.

• Áreas de importancia social: "tales como asentamientos humanos, de infraestructura física y social, y de importancia histórica y cultural”139.

Posteriormente, se estableció una escala de valores de sensibilidad (muy alta, alta, moderada, baja y muy baja) para la calificación de los parámetros de cada criterio, en la Tabla 2.29 se muestra la escala de colores utilizada para calificar la sensibilidad ambiental.

Tabla 2.29 Escala de colores para medir la sensibilidad ambiental

<table>
<thead>
<tr>
<th>Sensibilidad ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta</td>
</tr>
<tr>
<td>Alta</td>
</tr>
<tr>
<td>Moderada</td>
</tr>
<tr>
<td>Baja</td>
</tr>
<tr>
<td>Muy baja</td>
</tr>
</tbody>
</table>

Fuente: Aqua & Terra Consultores Asociados S.A.S., 2019

137 Ibid.
138 Ibid.
139 Ibid.
Teniendo los criterios claros y calificados se procedió a la elaboración de mapas intermedios para cada uno de los medios: abiótico, biótico y socioeconómico.

Por último, se integraron los mapas intermedios de cada uno de los medios y se sobrepusieron a través del uso de la herramienta SIG, para obtener la zonificación ambiental final.

El cruce de los mapas intermedios se realizó cualitativamente según la capa del criterio, las características de la zona y la experticia del profesional.

Nota: los criterios fueron escogidos una vez hecha la caracterización del área de influencia del proyecto. La definición y motivos de selección se presentan en detalle en el Capítulo 6 de éste estudio.

2.3.6 Demanda, uso, aprovechamiento y/o afectación de recursos naturales

2.3.6.1 Aguas superficiales

Para el desarrollo de las actividades de construcción de la línea de transmisión no se requiere la captación de agua de fuentes hídricas. Esta será comprada en bloque a la Empresa Publicas de Apartadó S.A.S. ESP

2.3.6.2 Aguas subterráneas

Para el desarrollo de las actividades de construcción de la línea de transmisión no se requiere la captación de agua de fuentes hídricas subterráneas.

2.3.6.3 Vertimientos

No será necesario el permiso de vertimientos en cuerpos de agua o suelos, debido a que el agua resultante de actividades industriales y domésticas será entregada a un gestor externo para su manejo y disposición.
2.3.6.4 Ocupación de cauces

Para la ejecución de las labores constructivas del proyecto no se requiere la ocupación de cauce, lechos o playas fluviales; por lo cual para el tendido de la línea no se verán afectados las dinámicas fluviales de los cuerpos de agua que se cruzan.

2.3.6.5 Aprovechamiento forestal

Con el fin de cuantificar la afectación generada sobre la flora ubicada en el área de afectación directa, se realizó un inventario forestal al 100%. A cada individuo muestreado se le midieron variables como Diámetro a la altura del pecho (DAP), Altura tota (HT), Altura comercial (HC), entre otras, las cuales permitieron estimar el volumen por individuo a través de la fórmula general de Volumen para individuos arbóreos propuesta por la FAO\(^{140}\)

\[
V = 0.0567 + 0.5074 \text{ DAP}^2 \times (\text{HT o HC})
\]

Ecuación 2.21 Formula general de volumen FAO

Una vez hallado el volumen por individuo, se estimó el volumen de madera comercial y total a aprovechar seguido de la composición florística encontrada, especies endémicas y especies con categoría de amenaza.

2.3.6.6 Emisiones atmosféricas

No se requiere el permiso de emisiones atmosféricas para la construcción de la línea de transmisión eléctrica.

2.3.6.7 Materiales de construcción

Los materiales requeridos para la ejecución del proyecto, se obtendrán a partir de la compra en canteras y sitios de extracción de material de arrastre que se encuentran cercanos al área del proyecto y que cuenten con permiso minero y autorizaciones ambientales correspondientes.

\(^{140}\) ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y ALIMENTACION. Estado mundial de la agricultura y la alimentación. 1968.
2.3.7 Evaluación ambiental

La Evaluación Ambiental tiene por objetivo la identificación y evaluación de los impactos ambientales que, probablemente, serán generados por el desarrollo del proyecto analizado, jerarquizándolos de tal manera que se permita la formulación de las medidas de manejo que estén orientadas a la prevención, mitigación, corrección o compensación del impacto generado.

Esta evaluación se realiza para dos escenarios: Sin Proyecto y Con Proyecto. En el escenario sin proyecto se evalúan los impactos ambientales que se generan a raíz de las actividades antrópicas desarrolladas actualmente en el área de interés, mientras que en el escenario con proyecto, se evalúan los impactos que se podrían generar como consecuencia de las actividades del proyecto en evaluación con el fin de elaborar las medidas de manejo necesarias para prevenir, corregir, mitigar, o compensar, los impactos generados según sea el caso. Para todo este procedimiento evaluativo se utilizó la metodología que propone Guía Metodológica para la Evaluación del Impacto Ambiental141 elaborada por Vicente Conesa y a continuación se describen cada uno de los pasos realizados.

2.3.7.1 Identificación de factores ambientales susceptibles a recibir impactos (FARI)

Inicialmente, a partir de la información primaria y secundaria que se levantó para la construcción de la línea base y la caracterización ambiental del área de influencia, se identifican los componentes o factores ambientales de cada uno de los medios analizados (abiótico, biótico y socioeconómico) que sean susceptibles de ser alterados o modificados, positiva o negativamente, por las diferentes actividades del proyecto o que ya estén siendo alterados por las actividades antrópicas que se ejecutan actualmente en el área de interés.

Para la definición de los factores ambientales susceptibles de ser modificados, se consideró que fuesen representativos, relevantes, excluyentes, de fácil identificación y preferiblemente cuantificables. Lo anterior se determina partiendo del conocimiento del área de influencia de tal manera que se tengan presente los elementos vulnerables, de alta importancia y representatividad de los medios abióticos, bióticos y socioeconómicos.

Posteriormente, a partir de los factores identificados que podían recibir algún tipo de afectación, se definieron y describieron los cambios y alteraciones que podrían sufrir, lo que finalmente permitió determinar cuál sería el impacto ambiental que se genera actualmente en el escenario sin proyecto en caso de que se afecte algún componente ambiental, o se generaría en caso de que dicha afectación se materializara para el escenario con proyecto. Lo anterior permite conocer las posibles modificaciones a las que son susceptibles cada uno de los componentes o factores ambientales identificados por las actividades propias del proyecto o por las que desarrolla la comunidad del área de influencia.

2.3.7.2 Identificación de acciones susceptibles de producir impacto - ASPI (escenario sin proyecto y con proyecto)

Consiste en la identificación de acciones impactantes de tipo antrópico desarrolladas en el área de influencia, que durante el desarrollo del proyecto son consideradas Indicadores de Presión, debido a que ejercen influencia sobre el medio ambiente variando o alterando el grado de calidad de los componentes ambientales.

Estas acciones, pueden generar cambios como: modificaciones al uso del suelo, emisión de contaminantes, deterioro del paisaje, modificación del entorno social, económico y cultural, consumo de los recursos naturales, riesgos, entre otras.

2.3.7.3 Identificación y Evaluación cuantitativa y cualitativa de impactos ambientales (escenario sin proyecto y con proyecto)

2.3.7.3.1 Identificación de impactos ambientales

Para la identificación de impactos ambientales se utilizó una matriz de causa-efecto, donde establecen las interacciones que se presentan entre las actividades que pueden producir impactos y los factores susceptibles de recibir afectación, identificando así, los impactos ambientales generados por cada actividad y para cada escenario.

En la matriz se ubicaron las actividades en las columnas y los factores ambientales en filas para luego marcar a través de un símbolo “+” o “-” donde se presentaba una interacción entre estos
dos componentes de análisis, dependiendo si era positiva o negativa. Es importante recordar que los factores considerados son los mismos para ambos escenarios pero que las actividades cambian de un escenario a otro, por lo que se construyeron dos matrices, una considerando las condiciones actuales de la zona y otra para cuando el proyecto entre a ser parte del entorno con sus diferentes etapas. El resultado de la determinación de estas interacciones a través de la matriz causa-efecto, es la identificación de los impactos ambientales que pueden ser generados para los escenarios evaluados.

La Tabla 2.30 muestra un ejemplo la matriz utilizada para la identificación de impactos. Para la evaluación del proyecto también se tuvieron en cuenta los impactos identificados por la comunidad en las socializaciones del proyecto.

Tabla 2.30 Ejemplo de la Matriz Causa – Efecto usada para el escenario con y sin proyecto

<table>
<thead>
<tr>
<th>Factor Ambiental susceptible de recibir impacto</th>
<th>Acción susceptible de producir impacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1 Impacto 1</td>
<td>Actividad 1 +/−</td>
</tr>
<tr>
<td>Factor 2 Impacto 2</td>
<td>Actividad 2 +/−</td>
</tr>
<tr>
<td>Factor 3 Impacto 3</td>
<td>Actividad 3 +/−</td>
</tr>
<tr>
<td>Factor n Impacto n</td>
<td>Actividad 4 +/−</td>
</tr>
</tbody>
</table>

Este proceso de identificación fue realizado por un equipo interdisciplinario constituido por especialistas en cada uno de los componentes que fueron caracterizados e identificados por su susceptibilidad a ser impactados por el proyecto o las actividades antrópicas de la comunidad y por profesionales del área técnica del proyecto.

2.3.7.3.2 Evaluación cuantitativa y cualitativa de impactos ambientales (escenario sin proyecto y con proyecto)

Como se mencionó anteriormente, esta evaluación ambiental se basó en la metodología cuantitativa y cualitativa de Vicente Conesa Vitora para la valoración de impactos ambientales, la cual tiene en cuenta la asignación de valores numéricos a una serie de atributos o criterios de...
acuerdo a las características de la actividad que produce el impacto, el factor que lo recibe y la afectación o cambio que se genera sobre el componente en sí. Debido a que este proceso de valoración implica la calificación de estos atributos según el criterio de cada profesional, se planteó una mesa de trabajo donde los profesionales que participaron en el estudio de impacto ambiental realizaron esta asignación de valores de manera conjunta, garantizando así, una evaluación objetiva, interdisciplinaria y aterrizada a la realidad del territorio en el área de influencia del proyecto.

Estos valores son incluidos en una fórmula matemática la cual determinará el valor numérico de la importancia del impacto ambiental, ya sea negativo o positivo, y este valor a su vez, determinará la calificación cualitativa del impacto, definiendo el impacto como irrelevante, moderado, severo o crítico, si es negativo, o benéfico bajo, benéfico moderado y benéfico alto, si es positivo.

Una vez realizada la identificación de impactos ambientales, se procede con la calificación y evaluación de los once (11) criterios o atributos determinados por la metodología empleada: naturaleza (NA), intensidad (IN), extensión (EX), momento (MO), persistencia (PE), reversibilidad (RV), sinergia (SI), acumulación (AC), efecto (EF), recuperabilidad (MC) y periodicidad (P). A continuación se presenta la escala de calificación que propone la metodología de Conesa (2010)\(^{143}\) en la Tabla 2.31.

<table>
<thead>
<tr>
<th>CRITERIOS</th>
<th>DEFINICIÓN</th>
<th>VALORACIÓN CUALITATIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NATURALEZA</td>
<td>Carácter benéfico o perjudicial del impacto, en cuanto a si la acción mejora o degrada el ambiente actual o a futuro.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>INTENSIDAD</td>
<td>Define el grado de degradación que ofrece la acción sobre el recurso.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX</td>
<td>EXTENSIÓN</td>
<td>Área de influencia teórica del impacto en relación con el entorno en que se manifiesta el efecto. Puntual se refiere a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{143}\) Ibíd
<table>
<thead>
<tr>
<th>CRITERIOS</th>
<th>DEFINICIÓN</th>
<th>VALORACION CUALITATIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cuando el efecto es localizado. Si, por el contrario, el efecto no admite una ubicación precisa dentro del entorno del proyecto, teniendo influencia generalizada en todo él, el impacto será total. Considerando las condiciones intermedias, según su gradación, como impacto parcial y extenso. En el caso de que el efecto sea puntual o no, se produzca en un lugar crucial o crítico, se estará ante un impacto de ubicación crítica y se le atribuirá un valor de cuatro unidades por encima del que le correspondería en función del porcentaje en que se manifiesta.</td>
<td>Amplio o extenso 4</td>
</tr>
<tr>
<td></td>
<td>Total 8</td>
<td>Crítico (+4)</td>
</tr>
<tr>
<td>MO MOMENTO</td>
<td>Tiempo que transcurre desde el inicio de la acción hasta el inicio del impacto que produce. Cuando el tiempo transcurrido sea nulo, el momento es inmediato, si es inferior a un año es corto plazo. Si el periodo de tiempo va de 1 a 10 años medio plazo, mientras que si el efecto tarda en demorarse más de 10 años es largo plazo. En caso de que concurra alguna circunstancia que hiciera crítico el plazo de manifestación del impacto, cabría atribuirle un valor de una a cuatro unidades por encima de las especificadas.</td>
<td>Largo Plazo 1</td>
</tr>
<tr>
<td></td>
<td>Medio Plazo 2</td>
<td>Corto plazo 3</td>
</tr>
<tr>
<td></td>
<td>Inmediato 4</td>
<td>Crítico (+4)</td>
</tr>
<tr>
<td>PE PERSISTENCIA</td>
<td>Tiempo en que se espera que permanezca el impacto desde su aparición, y a partir del cual el factor afectado retomaría a las condiciones iniciales previas a la acción. Cuando la permanencia del efecto es mínima o nula, el efecto se considera fugaz. Si la permanencia del efecto tiene lugar durante menos de un año, se considera que la acción produce un efecto momentáneo. Si dura entre 1 y 10 años, Temporal y si permanece entre 11 y 15 años, Persistente. Si la manifestación tiene una duración a 15 años se considera un efecto permanente.</td>
<td>Fugaz 1</td>
</tr>
<tr>
<td></td>
<td>Momentáneo 1</td>
<td>Temporal 2</td>
</tr>
<tr>
<td></td>
<td>Persistente 3</td>
<td>Permanente 4</td>
</tr>
<tr>
<td>RV REVERSIBILIDAD</td>
<td>Posibilidad del factor afectado por el proyecto de volver a sus condiciones iniciales previas a la acción, una vez se haya dejado de actuar sobre el medio. Si es corto plazo será en un período menor de 1 año, mediano plazo es entre 1 y 10 años, largo plazo entre 10 y 15 años y permanente o irreversible si es superior a 15 años.</td>
<td>Corto Plazo 1</td>
</tr>
<tr>
<td></td>
<td>Medio Plazo 2</td>
<td>Largo plazo 3</td>
</tr>
<tr>
<td></td>
<td>Irreversible 4</td>
<td>Sin sinergismos (simple) 1</td>
</tr>
<tr>
<td></td>
<td>Sinérgico 2</td>
<td>Muy Sinérgico 4</td>
</tr>
<tr>
<td>SI SINERGIA</td>
<td>Hay sinergia si dos efectos se manifiestan conjuntamente, y ello es mayor que sus manifestaciones aisladas. Si hay debilitamiento entre los efectos la sinergia es negativa, reduciendo la importancia.</td>
<td>Simple 1</td>
</tr>
<tr>
<td></td>
<td>Acumulativo 4</td>
<td></td>
</tr>
<tr>
<td>AC ACUMULACIÓN</td>
<td>Un impacto es acumulativo cuando hay un incremento progresivo de la manifestación del efecto y persiste de forma continuada o reiterada la acción que lo genera.</td>
<td></td>
</tr>
<tr>
<td>EF EFECTO</td>
<td>Este atributo se refiere a la relación causa/efecto sobre un factor, como consecuencia de una acción. Un efecto es directo cuando la relación causa a efecto es directa sin intermediaciones anteriores. El efecto es indirecto cuando su manifestación no es consecuencia directa de la acción, sino que tiene lugar a partir de un efecto primario, actuando este como una acción de segundo orden.</td>
<td>Indirecto Secundario 1</td>
</tr>
<tr>
<td></td>
<td>Directo 4</td>
<td></td>
</tr>
<tr>
<td>PR PERIODICIDAD</td>
<td>Regularidad de manifestación del efecto, bien sea de manera continua (las acciones que lo producen permanecen constantes en el tiempo), o discontinua (las acciones que lo producen actúan de manera intermitente), o irregular o</td>
<td>Irregular o aperiódico y discontinu 1</td>
</tr>
<tr>
<td></td>
<td>Periódico 2</td>
<td></td>
</tr>
</tbody>
</table>
Considerando los valores dados para cada criterio, según la tabla anterior, se obtiene la calificación de importancia para cada impacto. Cuando los impactos son de carácter negativo (-) se calcula con la Ecuación 2.22 Importancia del impacto de carácter negativo.

\[I = - (3IN + 2EX + MO + PE + RV + SI + AC + EF + PR + MC) \]

Ecuación 2.22 Importancia del impacto de carácter negativo

Fuente: Guía metodológica para la Evaluación del Impacto Ambiental. 4 ed. Conesa, 2010

Cuando son identificados impactos de carácter positivo (+), los criterios de reversibilidad (RE) y Recuperabilidad (MC) no son valorados, ya que al obedecer al tipo benéfico, el entorno no sufre efectos por revertir o recuperar, por lo tanto, éstos tendrán un valor igual a cero (0) dentro de la valoración y el cálculo se realizará por medio de la Ecuación

\[I = + (3IN + 2EX + MO + PE + SI + AC + EF + PR) \]

Ecuación 2.23 Importancia del impacto de carácter positivo

La importancia del impacto toma valores entre 13 y 100 y la calificación de la importancia de acuerdo a su carácter negativo (-) y para los impactos con características positivas (+) toma valores entre 11 y 88, se clasifica según la Tabla 2.32.
Tabla 2.32 Valoración cualitativa de la importancia (I) del impacto

<table>
<thead>
<tr>
<th>CRITERIOS</th>
<th>DEFINICIÓN</th>
<th>VALORACIÓN CUALITATIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Importancia de carácter negativo</td>
<td>Grado de manifestación cualitativa del efecto</td>
<td>Irrelevante 13 ≤ I < 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderado 25 ≤ I < 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severo 50 ≤ I < 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crítico I ≥ 75</td>
</tr>
<tr>
<td>I Importancia de carácter positivo</td>
<td>Grado de manifestación cualitativa del efecto</td>
<td>Benéfico bajo 11 ≤ I < 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benéfico moderado 37 ≤ I < 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benéfico alto 63 ≤ I ≤ 88</td>
</tr>
</tbody>
</table>

En la escala de impactos de carácter negativo (-), se considera como impactos significativos aquellos cuyo valor absoluto de importancia es mayor a 25, evaluados como impactos moderados, severos y críticos, es decir, que requieren de la implementación de medidas y/o estrategias específicas. Mientras que los impactos no significativos son aquellos cuyo valor absoluto de importancia es menor de 25 evaluados como irrelevantes o compatibles con el medio, ya que estos presentan una mayor asimilación del ambiente tras el cese de las actividades y no requieren medidas correctoras, o las medidas implementadas para los impactos moderados pueden absorber dichos impactos.

Por otro lado, los impactos de carácter positivo (+) se clasifican en Benéfico bajo, benéfico moderado y benéfico alto, hacen parte de alteraciones consideradas como favorables para los medios abióticos, biótico y social, los cuales son impactos que no requieren de medidas de manejo.

De acuerdo con la anterior clasificación, se definen los rangos de clasificación de los impactos negativos:

- Impacto ambiental crítico

Efecto cuya magnitud es superior al umbral acceptable. Con él se produce una pérdida permanente de la calidad de las condiciones ambientales, sin posible recuperación, incluso con la adopción de medidas correctas o protectoras. Se trata pues, de un impacto Irrecuperable.
• Impacto ambiental severo

Efecto en el que la recuperación de las condiciones del medio exige la adecuación de medidas correctoras o protectoras y en el que, aún con esas medidas aquella recuperación precisa de un periodo de tiempo dilatado. Solo los recuperables, posibilitan la introducción de medidas correctoras.

• Impacto moderado

Efecto cuya recuperación no precisa prácticas correctoras o protectoras intensivas y en el que el retorno al estado inicial del medio ambiente no requiere un largo espacio de tiempo. Puede tratarse de un impacto temporal, reversible y/o recuperable, a corto o medio plazo.

• Impacto irrelevante

Un impacto ambiental compatible es aquel cuya recuperación es inmediata tras el cese de la actividad y no precisa practicas protectoras o correctoras. Los impactos compatibles son impactos reversibles inmediatos y de persistencia fugaz.

2.3.7.4 Análisis de impactos

El análisis de los impactos, se realiza para los impactos identificados en el escenario Sin Proyecto y Con Proyecto, de acuerdo con la calificación de importancia del impacto para identificar los impactos más relevantes.

Adicionalmente, para el escenario Sin Proyecto, se realizó un análisis del estado actual del área de influencia en los medios abióticos, bióticos y socioeconómicos en donde se identificaron las áreas con mayor sensibilidad ambiental y un análisis de tendencia de los medios de acuerdo con el desarrollo y la dinámica propia de la región en los ámbitos como económicos, gubernamentales y preservación de recursos naturales.

Por otro lado, para el escenario Con Proyecto, se realizó un análisis para los medios abiótico, biótico y socioeconómico de los conflictos ambientales existentes en el área de influencia que pueden potenciarse por la presencia del proyecto.
Para los impactos más relevantes, se realizó el análisis de los impactos acumulativos, sinérgicos y residuales que pudiesen presentarse en el área y, de los impactos del proyecto por sí solos.

A continuación, se describen los lineamientos usados para el análisis de los impactos definidos como acumulativos, sinérgicos y residuales para la elaboración del estudio.

2.3.7.4.1 Impactos acumulativos

Efecto que resulta de la suma de impactos ocurridos en el pasado o que están ocurriendo en el presente. Su temporalidad se ve reflejada en acciones pasadas, presentes y futuras. Los impactos acumulativos se limitan a aquellos impactos que suelen considerarse importantes conforme a criterios científicos.

La acumulación es un atributo que se define como el incremento progresivo de la manifestación del efecto, cuando persiste de forma continuada o reiterada la acción que lo genera. Es aquel efecto que al prolongarse en el tiempo, la acción del agente inductor incrementa progresivamente su gravedad, al carecer el medio de mecanismos de eliminación con efectividad temporal similar a la del incremento de la acción causante del daño\(^{144}\).

La acumulación puede manifestarse debido a efectos colectivos y/o simultáneos de acciones persistentes en el tiempo en un componente como muestra la Figura 2.10

\(^{144}\) Ibid
Figura 2.10 Manifestación temporal de un impacto acumulativo.

Fuente: Conesa, 2010

En donde:

Ti: momento o instante actual
To: momento de inicio de la acción
Tj: momento de inicio del impacto
Tf: momento de finalización de la acción
Ti+1: momento de interés considerado

Los impactos son acumulativos, cuando pueden aumentar a través del tiempo, o que combinados con otros efectos generan uno nuevo como muestra la Figura 2.11.
2.3.7.4.2 Impactos sinérgicos

Estos impactos tienen distintos orígenes y su incidencia final es mayor a la suma de los impactos parciales. Los impactos pueden tener origen en un único proyecto o estar distribuidos en varios proyectos situados en una región próxima145.

Se producen cuando el efecto conjunto de la presencia simultánea de varios agentes o acciones, supone una incidencia ambiental mayor que el efecto suma de las incidencias individuales contempladas aisladamente, como muestra la Figura 2.12. Asimismo, se incluye en este tipo de impactos aquel efecto cuyo modo de acción induce con el tiempo la aparición de otros nuevos.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{impacto_sinergico.png}
\caption{Representación de un impacto sinérgico.}
\end{figure}

Fuente: Aqua & Terra Consultores Asociados S.A.S, 2019

La actuación simultánea de acciones que, una a una, darían lugar a pequeños e insignificantes impactos, pueden reforzarse conduciendo al sistema a estados de máxima degradación ambiental como muestra la Figura 2.13.

![Figura 2.13 Impactos simples (1 y 2) y sinérgico (3)](image)

En donde:

- Ti: momento o instante actual
- To: momento de inicio de la acción
- Tj: momento de inicio del impacto
- Tf: momento de finalización de la acción
- Ti+1: momento de interés considerado

De otro lado, la actuación simultánea de varias acciones con pequeña incidencia positiva en el medio, pueden llegar a producir verdaderos efectos de suma eficacia ambiental aumentando de forma ostensible la calidad del entorno.

2.3.7.4.3 Impactos residuales
Impactos cuyos efectos persistirán en el ambiente, luego de aplicadas las medidas de prevención, minimización y mitigación, razón por la cual se deben aplicar medidas de compensación146.

2.3.8 Zonificación de manejo ambiental del proyecto

A partir de la zonificación ambiental y teniendo en cuenta la evaluación de impactos realizada, se determinó la zonificación de manejo ambiental; la cual agrupa los resultados del análisis de la sensibilidad ambiental identificada, frente al grado de intervención o afectación al que podrán exponerse las diferentes áreas del proyecto. El resultado de la interacción permite establecer áreas de intervención sin restricción, áreas de intervención con restricciones y áreas de exclusión. A continuación, se definen las características de las mencionadas áreas:

- Áreas de intervención sin restricción: “Corresponden a áreas donde se puede desarrollar el proyecto, con un manejo ambiental acorde a las actividades y fases del mismo”147. Son consideradas en esta categoría las áreas identificadas en la zonificación ambiental con sensibilidad muy baja.

- Áreas de intervención con restricciones: “Corresponde a áreas donde se deben tener en cuenta manejos especiales y restricciones propias acordes con las actividades y fases del proyecto, y con la vulnerabilidad ambiental de la zona. Se deben establecer grados, tipos de restricción y condiciones para la ejecución de las obras y actividades”. Para lo cual se presentan en tres categorías (alta, media y baja)148. Son consideradas en esta categoría las áreas identificadas en la zonificación ambiental con sensibilidad baja, moderada y alta.

- Áreas de exclusión: Corresponde a áreas que no pueden ser intervenidas por las actividades del proyecto. Se deben considerar como criterios de exclusión, la vulnerabilidad y funcionalidad ambiental de la zona, así como las áreas relacionadas

146 ANLA. Op. cit
147 Ibíd
148 Ibíd
con aspectos legales y con régimen especial. Son consideradas en esta categoría las áreas identificadas en la zonificación ambiental con sensibilidad muy alta.

Para cada medio se realizaron los mapas intermedios y posteriormente mediante la suma de cada mapa por medio, se obtuvo el mapa de zonificación de manejo ambiental final.

2.3.9 Evaluación económica ambiental

La ejecución de proyectos de desarrollo, ha generado la necesidad de adelantar estudios ambientales para determinar el posible deterioro ambiental generado por los mismos. Como parte de estos estudios, la valoración ambiental de impactos representa una importante alternativa para asimilar algunas de las principales afectaciones, especialmente las referentes al bienestar humano. En este sentido, desde la economía se han generado diferentes herramientas teóricas y metodológicas para complementar y mejorar la calidad de los procesos de evaluación ambiental para fortalecer la toma de decisiones desde los sectores público y privado.149 El propósito de estas herramientas es identificar y estimar el valor económico de los impactos ambientales de tal manera que estos puedan incluirse dentro del análisis económico y contribuir en la determinación de la viabilidad del mismo.

Actualmente, el Ministerio de Ambiente y Desarrollo Sostenible exige la evaluación económica de los impactos ambientales para proyectos son objeto de licenciamiento ambiental a través del Decreto 1076 de 2015 “por el cual se expide el decreto único reglamentario del sector ambiente y desarrollo sostenible”150 y establece los criterios y procesos fundamentales que se deben aplicar mediante los “Criterios técnicos para el uso de herramientas económicas en los proyectos, obras o actividades objeto de licenciamiento ambiental”151. De acuerdo a dicha exigencia, en este estudio se realizó la valoración económica de los principales impactos asociados al proyecto Línea de Conexión Subestación Nueva Colonia – Puerto Antioquia.

150 COLOMBIA. MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE – MADS. Decreto 1076 de 2015. Por el cual se expide el decreto único reglamentario del sector ambiente y desarrollo sostenible. Bogotá DC, 2015. 174 p
151 COLOMBIA. MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL – MAVDT. Criterios técnicos para el uso de herramientas económicas en los proyectos, obras o actividades objeto de licenciamiento ambiental. Bogotá D.C. 2017, 148 p
Acogiendo los criterios técnicos para la valoración económica de impactos ambientales152, se dirigirá la atención hacia los impactos no internalizables, es decir, los que no se pueden reversar totalmente en términos de la afectación generada.

2.3.9.1 Análisis Costo Beneficio - ACB

Por medio de este análisis se estima el balance entre beneficios y costos económicos del proyecto y se evalúa su viabilidad desde el punto de vista ambiental y social. A continuación se describe la estructura a seguir:

- Identificación de los Impactos del Proyecto

Esta fase de identificación de impactos debe ser realizada con base en los resultados obtenidos en la evaluación ambiental del EIA de los componentes biótico, abiótico y socioeconómico (Capítulo 5).

En este paso se identifican todos los impactos que genera el proyecto, considerando tanto las afectaciones positivas como las negativas y luego se identifican cuáles de estos impactos generan las mayores pérdidas o ganancias desde el punto de vista del bienestar social.

Se deben valorar aquellos impactos ambientales que resultan más relevantes de acuerdo a la evaluación cualitativa y que no son internalizados por las medidas propuestas de los planes de manejo ambiental.

- Impactos internalizables

Consiste en analizar en términos de prevención, mitigación o corrección, los programas y proyectos del Plan de Manejo Ambiental, debido a que con la definición de acciones se puede evitar el cambio de la calidad y cantidad ambiental de la zona de estudio153.

152 INSTITUTO NACIONAL DE VÍAS – INVÍAS Y FINANCIERA DE DESARROLLO NACIONAL – FDN. Capítulo 3.4 Caracterización del medio socioeconómico. En: Estudio de Impacto Ambiental para la modificación de la licencia ambiental para el dragado de profundización del canal de acceso a la Bahía de Cartagena, Colombia. Bogotá. 2014. 360 p

Para la identificación de los impactos internalizables se debe tener en cuenta el capítulo de Evaluación Ambiental y los Planes y programas en los que se describen los planes con las acciones de manejo para cada medio, identificando las medidas de control, corrección, prevención y mitigación. Del mismo modo en este apartado se presentan los costos que obedecen a la internalización de los impactos señalados como irrelevantes y moderados.

Ahora bien, habrá impactos cuyas medidas de manejo no alcancen a internalizar todas las afectaciones en términos de bienestar, por lo cual se hace necesario identificar las externalidades asociadas a esos impactos, valorarlos y llevarlos a la evaluación.

- Impactos no internalizables (residuales)

Son todos aquellos impactos que no pueden controlarse mediante medidas de manejo de prevención o corrección. Para estos impactos se debe presentar una estimación del valor económico de los impactos ambientales significativos que puedan afectar los flujos de servicios ambientales en el área de influencia del proyecto.

Para la valoración de estos impactos se evaluaron las alternativas metodológicas disponibles y se aplicaron las que se consideraron más adecuadas y consistentes para los impactos identificados. A continuación se presenta la estructura secuencial para el desarrollo de la valoración económica de los impactos no internalizables:

- Cuantificación del cambio en los servicios ecosistémicos

Este paso hace referencia a la cuantificación física de los impactos más relevantes. En este punto, se busca calcular en unidades físicas los flujos de costos y beneficios asociados con el proyecto, además de su identificación en espacio y tiempo.

En este apartado se identifican los beneficios que aportan los ecosistemas es decir “servicios ecosistémicos” o “contribuciones directas e indirectas de los ecosistemas al bienestar humano".
De acuerdo con la evaluación de Ecosistemas del Milenio (MEA, 2005), los servicios ecosistémicos pueden ser de cuatro tipos: aprovisionamiento, regulación, soporte y culturales:

- Los servicios de aprovisionamiento constituyen el conjunto de bienes y productos que se obtienen de los ecosistemas, tales como: alimentos, fibras, maderas, leña, agua, recursos genéticos y pieles, entre otros.

- Los servicios de regulación son los beneficios resultantes de la regulación de los procesos ecosistémicos, incluyendo el mantenimiento de la calidad del aire, la regulación del clima, el control de la erosión, el control de enfermedades humanas y la purificación del agua.

- En cuanto a los de soporte, son los servicios y procesos ecológicos necesarios para el aprovisionamiento y la existencia de los demás servicios ecosistémicos; estos servicios se evidencian a escalas de tiempo y espacio mucho más amplias que los demás, ya que incluyen procesos como la producción primaria, la formación del suelo, la provisión de hábitat para especies, el ciclado de nutrientes, entre otros.

- Los servicios culturales son los beneficios no materiales obtenidos de los ecosistemas, tales como el enriquecimiento espiritual, la belleza escénica, la inspiración artística e intelectual, el desarrollo cognitivo, la reflexión, la recreación y las experiencias estéticas.

Todos estos servicios, generan beneficios para el bienestar de los seres humanos en diferentes capos como el de la salud (aportando un ambiente propicio para la vida, aguas limpias y buena alimentación que evita enfermedades), la provisión de material básico para el buen vivir (carnes, frutas, verduras, refugio, agua y energía), la seguridad (ofreciendo protección contra tormentas, tsunamis, rayos ultravioleta y contaminación entre otros), las relaciones sociales buenas (ya que al tener las necesidades básicas.

154 COLOMBIA. MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL – MAVDT. Criterios técnicos para el uso de herramientas económicas en los proyectos, obras o actividades objeto de licenciamiento ambiental. Bogotá D.C. 2017, 148 p
155 COLOMBIA. MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL – MAVDT. Criterios técnicos para el uso de herramientas económicas en los proyectos, obras o actividades objeto de licenciamiento ambiental. Bogotá D.C. 2017, 148 p
- Valoración económica de los cambios en los servicios ecosistémicos

Una vez se han identificado los impactos más relevantes se procede a valorarlos teniendo en cuenta el horizonte de tiempo de la afectación. En esta etapa se cuantifican, en términos monetarios, los costos o externalidades negativas y los beneficios o externalidades positivas asociados al desarrollo del proyecto. Para la cuantificación monetaria se emplearan dos metodologías las cuales se describen a continuación:

 o Precios de mercado - Cambios en la productividad

Esta metodología estima los valores económicos de los productos y/o servicios de los ecosistemas, que son comprados y vendidos en los mercados comerciales, y es utilizado para cuantificar los cambios de valor en la cantidad o calidad de un bien o servicio.

En el método de cambios en la productividad la calidad de los bienes y/o servicios ecosistémicos determina los niveles y cambios en la productividad de otros bienes de carácter mercadeable.

Los cambios físicos en la producción debido a cambios ambientales son valorados usando precios de mercado para los insumos y productos. El valor económico de este análisis será incorporado en el análisis económico del proyecto.

 o Transferencia de beneficios

Esta metodología permite hacer uso de estimaciones obtenidas (por cualquier método) en un contexto para estimar valores en otro contexto. Este método se utiliza para calcular los valores económicos de los servicios de los ecosistemas mediante la transferencia de información disponible de estudios ya realizados en otro lugar. En la Figura 2.14 se muestran los pasos a seguir en la metodología de transferencia de beneficios.
Figura 2.14 Pasos a seguir en la metodología de transferencia de beneficios

Fuente: MAVDT157, 2017 Planes y programas

- Valor Presente Neto

El valor presente neto (VPN) corresponde a todos los ingresos brutos expresados en moneda actual a través de una tasa de descuento (d), siendo este último en otras palabras el costo de oportunidad de la inversión. El VPN se obtiene de la siguiente manera:

\[
VPN = \sum \left(\frac{BT}{(1 + d)^t} \right)
\]

Dónde:

\begin{itemize}
 \item d= tasa de descuento
 \item t= período de análisis
\end{itemize}

La tasa social de descuento (TSD) recomendada para Colombia es del 12\% de acuerdo con la Resolución 1669 de 2017158.

157 COLOMBIA. MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL – MAVDT. Criterios técnicos para el uso de herramientas económicas en los proyectos, obras o actividades objeto de licenciamiento ambiental. Bogotá D.C. 2017, 148 p

158 COLOMBIA. MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE. Resolución 1669 (Agosto, 15, 2017). Por el cual se adoptan los criterios técnicos para el uso de herramientas económicas en los proyectos, obras o actividades objeto de licencia ambiental o instrumento equivalente y se adoptan otras determinaciones. Bogotá D.C, 2017.
• Beneficios del proyecto

Se identificaron los beneficios (externalidades positivas) en el ámbito social, ambiental o económico que obtiene la población objetivo en el momento en que se decide ejecutar un proyecto.

- Cálculo de Costos y Beneficios - ACB

Este análisis brinda las bases para identificar si la implementación del proyecto genera pérdidas o ganancias al bienestar social y se calcula a partir del flujo de beneficios y costos ambientales identificados para el proyecto.

Los costos/beneficios cuantificados a partir de las técnicas de valoración, deben agregarse dependiendo de la población beneficiada/afectada y el periodo u horizonte de tiempo de las afectaciones tanto positivas como negativas del proyecto, obra o actividad.

Una vez se tiene el flujo de costos y beneficios consolidado, este debe descontarse utilizando la tasa social de descuento, para obtener el Valor Presente Neto - VPN de los beneficios/costos.

- Cálculo y comparación de la relación Beneficio Costo

Luego de haber obtenido el valor presente neto (VPN) de los costos ambientales y de los beneficios, se procede al análisis de Relación Beneficio Costo (RBC), el cual es el cociente entre el valor actual de los beneficios y el valor actual de los costos:

\[
RBC = \frac{\sum B_i}{\sum C_i} = \frac{\text{VPN}_\text{beneficios}}{\text{VPN}_\text{costos}}
\]

RBC: Relación Beneficio Costo

VAN: Valor actual neto o Valor presente neto

<table>
<thead>
<tr>
<th>Relación Beneficio Costo - RBC</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC > 1</td>
<td>El proyecto genera bienestar social; se aporta de manera subsidiaria en la toma de decisión sobre la viabilidad ambiental del proyecto y se dice que éste genera ganancias en bienestar social.</td>
</tr>
<tr>
<td>Relación Beneficio Costo - RBC</td>
<td>Interpretación</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>RBC = 1</td>
<td>El proyecto no presenta cambios en bienestar social; por lo tanto es indiferente.</td>
</tr>
<tr>
<td>RBC < 1</td>
<td>El proyecto empeora el bienestar social; por lo tanto, no es recomendable su ejecución.</td>
</tr>
</tbody>
</table>

Los resultados de este indicador muestran la relación de un proyecto en términos del bienestar social que genera, lo cual se toma como criterio de la rentabilidad de cada alternativa desde un punto de vista social. Una RBC mayor a uno, significa que el proyecto genera resultados económicamente positivos para la sociedad.

2.3.10 Planes y programas

2.3.10.1 Plan de manejo ambiental

2.3.10.1.1 Programas de manejo ambiental

Las medidas planteadas en el PMA proponen un conjunto de acciones o medidas necesarias para prevenir, mitigar, corregir y/o compensar los impactos potenciales identificados generados sobre los medios abiótico, biótico y socioeconómico.

Estos planes presentan una codificación y estructuración que posibilitará su control y actualización. Además, contienen los siguientes ítems: objetivos, metas, etapa, impactos a controlar, tipos de medida, acciones a desarrollar, lugar de aplicación, personal requerido, indicadores de seguimiento y monitoreo, responsables de la ejecución, cronograma y presupuesto.

2.3.10.1.2 Programas de seguimiento y monitoreo

Formulados los planes de manejo ambiental, es necesario asegurar la implementación y el cumplimiento de los mismos. Para ello, se diseñaron las estrategias de seguimiento y monitoreo del proyecto, con el fin de determinar el comportamiento, eficiencia y eficacia de los planes de manejo ambiental en cuanto a la afectación de los medios abiótico, biótico y socioeconómico.

2.3.10.1.3 Plan de gestión del riesgo

159 COLOMBIA, MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL – MAVDT. Criterios técnicos para el uso de herramientas económicas en los proyectos, obras o actividades objeto de licenciamiento ambiental. Bogotá D.C. 2017, 148 p
El objetivo de este capítulo será presentar un plan que permita prevenir atender y controlar adecuada y eficazmente una emergencia. Para esto se tendrán en cuenta las amenazas que se presentan en la zona y los riesgos asociados al desarrollo del proyecto.

- **Conocimiento del riesgo**

Se debe realizar una caracterización de las amenazas que se puedan llegar a desencadenar en el área de influencia del proyecto, sobre estos se realizara una priorización sobre cuales evaluar las posibles afectaciones y plantear escenarios de emergencia.

- **Eventos no planeados que desencadenen impactos ambientales**

Se refiere a la identificación de los posible sucesos adversos sean de origen natural o inducidos sin intención por entidades antrópicas

- **Eventos asociados al proyecto**

Se deben señalar cuales podrían ser los siniestros asociados al desarrollo del proyecto, para esto se debe revisar cada una de las actividades que plantea el desarrollo del mismo y distinguir sobre cuales actividades se presentan las afectaciones.

- **Análisis y evaluación del riesgo**

Con las amenazas que se presentan, se plantear una metodología donde presente cuales son los criterios a utilizar para el análisis

- **Análisis de consecuencias**

Se realizara un cruce entre las medidas de la consecuencia o impacto y las medidas de las posibilidades de cada amenaza, para clasificar y obtener un valor de riesgo y de esta manera evaluar el mismo

Tabla 2.34 Matriz de análisis cualitativo de riesgos.

<table>
<thead>
<tr>
<th>PROBABILIDAD</th>
<th>CONSECUENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INSIGNIFICANTE (1)</td>
</tr>
<tr>
<td>A (Casi cierto)</td>
<td>H</td>
</tr>
<tr>
<td>B (Probable)</td>
<td>M</td>
</tr>
<tr>
<td>C (Posible)</td>
<td>L</td>
</tr>
</tbody>
</table>
ESTUDIO DE IMPACTO AMBIENTAL PARA LA LÍNEA DE CONEXIÓN SUBESTACIÓN NUEVA COLONIA-PUERTO ANTIOQUIA

<table>
<thead>
<tr>
<th>PROBABILIDAD</th>
<th>INSIGNIFICANTE (1)</th>
<th>MENOR (2)</th>
<th>MODERADA (3)</th>
<th>MAYOR (4)</th>
<th>CATASTROFICA (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (Improbable)</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>E</td>
</tr>
<tr>
<td>E (Raro)</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Convenciones
E= Riesgo extremo.
H= Alto riesgo.
M= Riesgo moderado.
L= Riesgo inferior.

Esto se realizará de acuerdo a la fase del proyecto y donde se identifique la amenaza.

- Reducción del riesgo

Son las medidas de prevención y mitigación para disminuir la amenaza, exposición y vulnerabilidad, que puedan afectar al medio, como:

- Realizar programas de educación, comunicación y divulgación de las medidas de atención ante una emergencia, para que todo el personal asociado al proyecto, comunidades y trabajadores, conozcan las medidas a tener en cuenta.

- Relacionar ante los trabajadores del proyecto los encargados de cada frente de trabajo, y con quién deben comunicarse en el caso de presentarse un evento.

- Controlar la presencia de trabajadores y visitantes en el área del proyecto.

- Realizar mantenimientos periódicos de instalaciones, equipos, maquinaria e infraestructura, de acuerdo con lo planificado.

- Evaluar y controlar la ocurrencia de enfermedades relacionadas con los factores de riesgo laboral como: ergonómicos, químicos y físicos.

- Capacitar sobre procedimientos adecuados para el desarrollo de las actividades laborales.

- Definir y demarcar rutas de evacuación y mantener las mismas libre de obstáculos en todo momento.

- Señalizar, demarcar y aislar las áreas de alto riesgo para evitar el acceso de personal no autorizado.

- Definir y socializar los puntos de encuentro.

- Utilizar personal capacitado para realizar cada una de las actividades.

➢ Portar siempre y de forma adecuada los elementos de protección personal (EPP’s).

➢ Imponer a los trabajadores sanciones disciplinarias a que haya lugar, cuando incumplan las normas relativas a seguridad y salud en el trabajo.

➢ Almacenar correctamente los equipos, materiales e insumos.

➢ Mantener en buen estado las instalaciones eléctricas.

➢ Identificar personas con necesidades especiales (que sean prioritarias en protección y atención).

➢ Implementar sistemas de monitoreo y alarma.

➢ Conformar, capacitar y entrenar comités y brigadas de emergencia, acorde a la normatividad colombiana.

- Manejo de la contingencia

El manejo de la contingencia abarca las acciones, lineamientos y procedimientos encaminados a afrontar de manera adecuada y eficaz la ocurrencia de una emergencia que comprometa la integridad física del personal vinculado al proyecto, las comunidades vecinas, infraestructura, maquinaria, equipos, herramientas y el entorno natural, a lo largo de la vida útil del proyecto.

➢ Designen funciones

➢ Establezcan procedimientos (Recursos humanos y técnicos)

➢ Establezcan sistemas de información, comunicación y apoyo externo.
2.3.10.1.4 Plan de desmantelamiento y abandono

En este plan, se plantean programas para el desmantelamiento de instalaciones temporales, realizando un diagnóstico sobre la existencia de pasivos ambientales que permita priorizar los más significativos y a partir de estos tomar determinaciones sobre su manejo.

Se presentara la relación de las actividades y obras necesarias para el abandono, las medidas de manejo y reconformación morfológica, las estrategias de información a la comunidad y autoridad. El documento pretende establecer un plan de referencia una vez culminada la fase constructiva y se vaya a dar inicio a la fase operativa.

- Desmantelamiento

Una vez finalizada la intervención constructiva, se debe realizar el desmantelamiento de las zonas adecuadas para almacenar equipos e insumos y montajes provisionales, así mismo se debe garantizar la limpieza de los lugares señalados, tales como puentes, vía en superficie y las zonas de acopio de materiales.

Para cada uno de los lugares señalados se presenta el objetivo a cumplir, las medidas de referencia, establecidas para cumplir el objetivo y el costo. Se debe completar un formulario que será supervisado por personal previamente seleccionado por el ente constructor, quien dará el aval de satisfacción en registro escrito, como soporte del desmantelamiento respectivo.
• Restauración

Encaminado a señalar las medidas de restauración morfológica que garanticen la estabilidad y restablecimiento de la cobertura vegetal y reconformación paisajística, según aplique y en concordancia con la propuesta de uso final del suelo. Principalmente para las zonas como: el derecho de vía, las zonas de reserva, márgenes y zonas de acopio de materiales. Sobre estas, se presenta una breve descripción, el objetivo, las medidas a aplicar y el costo.

• Información

Se postulará una estrategia de información a la comunidad y autoridad del área de influencia, sobre la finalización de las actividades de construcción y sobre las medidas que serán implementadas para el desmantelamiento.

2.3.10.1.5 Plan de compensación por pérdida de biodiversidad

Para la formulación de la propuesta para el Plan de compensación por pérdida de biodiversidad se tuvo en cuenta la metodología del Manual de Compensaciones del Componente Biótico expedido por el Ministerio de Ambiente y Desarrollo Sostenible.