Industry Description and Practices

The sugar industry processes sugar cane and sugar beet to manufacture edible sugar. More than 60% of the world's sugar production is from sugar cane and the balance is from sugar beet. Approximately 10% of the sugar cane can be processed to commercial sugar and uses approximately 20 cubic meters of water per metric ton (m³/t) of cane processed. Sugar cane contains 70% water; 14% fiber; 13.3% saccharose (about 10 to 15% sucrose); and 2.7% soluble impurities. Sugar canes are generally washed and then juice is extracted from them. This juice is then clarified to remove mud, evaporated to prepare syrup, crystallized to separate out the liquor, and then centrifuged to separate molasses from the crystals. Sugar crystals are then dried and may be further refined before bagging for shipment. In some places (for example, in South Africa), extraction of juice is performed by a diffusion process which can give higher rates of extraction with lower energy consumption and reduced operating and maintenance costs. For processing sugar beet (water concentration 75%, sugar concentration 17%), only the washing, preparation, and extraction processes are different. After washing, the beet is sliced and the slices are drawn into a slowly rotating diffuser where a countercurrent flow of water is used to remove sugar from the beet slices. Approximately 15 m³ of water and 28 kilowatt hours (kWh) of energy is consumed per metric ton of beet. Refining of sugar involves removal of impurities and decolorization. The steps generally followed include affination (mingling and centrifugation), melting, clarification, decolorization, evaporation, crystallization, and finishing. Decolorization methods use granular activated carbon, powdered activated carbon, ion exchange resins, and other materials. This is a highly seasonal industry, with season lengths of approximately 6 to 18 weeks for beets and 20 to 32 weeks for cane.

Waste Characteristics

The major air emissions from sugar processing and refining result mainly from the combustion of bagasse (fiber residue of sugar cane), fuel oil, or coal. Other air emission sources include juice fermentation units, evaporators, and sulfitation units. Approximately 5.5 kilograms (kg) of fly ash per metric ton of cane processed (or 4,500 mg/m³ of fly ash) is present in the flue gases from the combustion of bagasse.

Sugar manufacturing effluents typically have biochemical oxygen demand (BOD₅) (1,700-6,600 milligrams per liter (mg/L) in untreated effluent from cane processing and 4,000-7,000 mg/L for beet processing), COD (2,300-8,000 mg/L from cane processing and up to 10,000 mg/L in beet processing), total suspended solids (up to 5,000 mg/L), and high ammonium content. The wastewater may contain pathogens from contaminated materials or production processes. A sugar mill often generates odor and dust, which need to be controlled. Most of the solid wastes can be processed into other products and by-products. In some cases, pesticides may also be present in the sugar cane rinse liquids.
Pollution Prevention and Control

Good pollution prevention practices in sugar manufacturing focus on the following main areas:

- Reduce product losses to less than 10% by better production control. Perform sugar auditing.
- Spraying of molasses on the ground is a disposal practice which should be discouraged.
- Minimize storage time for juice and other intermediate products to reduce product losses and their discharge into the wastewater stream.
- Give preference to less polluting clarification processes such as those using bentonite instead of sulfate for the manufacture of white sugar.
- Collect waste product for use in other industries such as the use of bagasse in paper mills and as fuel. Co-generation systems for large sugar mills generate electricity for sale. Beet chips can be used as animal feed.
- Optimize the use of water and cleaning chemicals. Procure canes washed in the field. Prefer the use of dry cleaning methods.
- Recirculate cooling waters.

Continuous sampling and measuring of key production parameters allow production losses to be identified and reduced, thus reducing the waste load. Fermentation processes and juice handling are the main sources of leakages. Odor problems can usually be prevented with good hygiene and storage practices.

Target Pollution Loads

Since the pollutants generated by the industry are very largely losses in production, improvements in production efficiency (as detailed in the previous section) are recommended to reduce pollutant loads. Approximately 90% of the saccharose should be accounted for and 85% of the sucrose can be recovered. Recirculation of water should be maximized.

Wastewater loads can be reduced to at least 1.3 m3/t of cane processed, and plant operators should aim to achieve rates of 0.9 m3/t or less with recirculation of wastewater. Wastewater loads from beet processing should be less than 4 m3/t of sugar produced or 0.75 m3/t of beet processed with an aim to achieve 0.3 to 0.6 m3/t of beet processed.

Treatment Technologies

Pretreatment of effluents consists of screening and aeration normally followed by biological treatment. If space is available, land treatment or pond systems are potential treatment methods. Other possible biological treatment systems include activated sludge and anaerobic systems which can achieve a reduction in the BOD level of over 95%.

Odor control by ventilation and sanitation may be required for fermentation and juice processing areas. Biofilters may be used for controlling odor. Cyclones, scrubbers, and electrostatic precipitators are used for dust control.

Emission Guidelines

Emission levels for the design and operation of each project must be established through the Environmental Assessment (EA) process, based on country legislation and the Pollution Prevention and Abatement Handbook as applied to local conditions. The emission levels selected must be justified in the EA and acceptable to MIGA.

The following guidelines present emission levels normally acceptable to the World Bank Group in making decisions regarding provision of World Bank Group assistance, including MIGA guarantees; any deviations from these levels must be described in the project documentation.

The guidelines are expressed as concentrations to facilitate monitoring. Dilution of air emissions or effluents to achieve these guidelines is unacceptable.

All of the maximum levels should be achieved for at least 95% of the time that the plant or unit is operating, to be calculated as a proportion of annual operating hours.

Air Emissions

Particulate matter and sulfur oxide emissions should be less than 100 milligrams per normal cubic meter (mg/Nm3) (in some cases, up to
150 mg/Nm³ for small mills with less than 8.7 megawatts (MW) heat input to the boiler) and 2,000 mg/Nm³, respectively. Nitrogen oxide emissions should be less than 260 nanograms per joule (ng/J) (750 mg/Nm³) for solid fuels and 130 ng/J (460 mg/Nm³) for liquid fuels. Odor controls should be implemented where necessary to achieve acceptable odor quality for nearby residents.

Liquid Effluents

The following effluent levels should be achieved:

Effluents from Sugar Manufacturing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum value milligrams per liter (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6 - 9</td>
</tr>
<tr>
<td>BOD₅</td>
<td>50</td>
</tr>
<tr>
<td>COD</td>
<td>250</td>
</tr>
<tr>
<td>Total suspended solids</td>
<td>50</td>
</tr>
<tr>
<td>Oil and grease</td>
<td>10</td>
</tr>
<tr>
<td>Total nitrogen (NH₄-N)</td>
<td>10</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>2</td>
</tr>
<tr>
<td>Temperature increase</td>
<td>less than or equal to 3°C¹</td>
</tr>
</tbody>
</table>

¹The effluent should result in a temperature increase of no more than 3 degrees Celsius at the edge of the zone where initial mixing and dilution takes place. Where the zone is not defined, use 100 meters from the point of discharge.

Biocides should not be present above detection levels or should be less than 0.05 mg/L.

Note: Effluent requirements are for direct discharge to surface waters.

Ambient Noise

Noise abatement measures should achieve either the following levels or a maximum increase in background levels of 3 dB(A). Measurements are to be taken at noise receptors located outside the project property boundary.

<table>
<thead>
<tr>
<th>Ambient Noise</th>
<th>Maximum Allowable Lₐeq (hourly), in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receptor Daytime</td>
</tr>
<tr>
<td></td>
<td>07:00 - 22:00</td>
</tr>
<tr>
<td>Residential; institutional; educational</td>
<td>55</td>
</tr>
<tr>
<td>Industrial; commercial</td>
<td>70</td>
</tr>
</tbody>
</table>

The emission requirements given here can be consistently achieved by well-designed, well-operated and well-maintained pollution control systems.

Monitoring and Reporting

Monitoring of air emissions should be on an annual basis with continuous monitoring of the fuel used. Only fuels with acceptable levels of ash and sulfur should be used. Monitoring of the final effluent for the parameters listed above should be carried out at least on a daily basis, or more frequently if the flows vary significantly. Effluents should be sampled annually for biocides to ensure that they are not present at significant levels.

Monitoring data should be analyzed and reviewed at regular intervals and compared with the operating standards so that any necessary corrective actions can be taken. Records of monitoring results should be kept in an acceptable format. These should be reported to the responsible authorities and relevant parties, as required, and provided to MIGA if requested.

Note: Effluent requirements are for direct discharge to surface waters.
Key Issues

The following box summarizes the key production and control practices that will lead to compliance with emission guidelines:

- Monitor key production parameters to reduce product losses to less than 10%.
- Design and operate the production system to achieve recommended wastewater loads.
- Recirculate cooling waters.
- Collect wastes for use in low-grade products.

Further Information

The following are suggested as sources of additional information (these sources are provided for guidance and are not intended to be comprehensive):
